【题目】已知AB∥CD,点E为平面内一点,BE⊥CE于E,
(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;
(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;
(3)如图3,在(2)的条件下,作EG平分∠CEF交DF于点G,作ED平分∠BEF交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数。
【答案】(1)∠DCE=90°+∠ABE;(2)见解析;(3)∠BEG=105°.
【解析】
(1)结论:∠DCE=90°+∠ABE.如图1中,从BE交DC的延长线于H.利用三角形的外角的性质即可证明;
(2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;
(3)如图3中,设∠GEF=α,∠EDF=β.想办法构建方程求出α即可解决问题;
解:(1)结论:∠DCE=90°+∠ABE.
理由:如图1中,从BE交DC的延长线于H.
∵AB∥CH,
∴∠ABE=∠H,
∵BE⊥CE,
∴∠CEH=90°,
∴∠DCE=∠H+∠CEH=90°+∠H,
∴∠DCE=90°+∠ABE.
(2)如图2中,作EM∥CD,
∵EM∥CD,CD∥AB,
∴AB∥CD∥EM,
∴∠BEM=∠ABE,∠F+∠FEM=180°,
∵EF⊥CD,
∴∠F=90°,
∴∠FEM=90°,
∴∠CEF与∠CEM互余,
∵BE⊥CE,
∴∠BEC=90°,
∴∠BEM与∠CEM互余,
∴∠CEF=∠BEM,
∴∠CEF=∠ABE.
(3)如图3中,设∠GEF=α,∠EDF=β.
∴∠BDE=3∠GEF=3α,
∵EG平分∠CEF,
∴∠CEF=2∠FEG=2α,
∴∠ABE=∠CEF=2α,
∵AB∥CD∥EM,
∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,
∴∠BED=∠BEM+∠MED=2α+β,
∵ED平分∠BEF,
∴∠BED=∠FED=2α+β,
∴∠DEC=β,
∵∠BEC=90°,
∴2α+2β=90°,
∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,
∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,
∵∠ABK=180°,
∴∠ABE+∠B=DBE+∠KBD=180°,
即2α+(3α+β)+(3α+β)=180°,
∴6α+(2α+2β)=180°,
∴α=15°,
∴∠BEG=∠BEC+∠CEG=90°+15°=105°.
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、CD交于点O,OE⊥AB,且OC平分∠AOE.
(1)如图1,求∠BOD的度数;
(2)如图2,过O点作射线OF,且∠DOF=4∠AOF,求∠FOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCO中,A(1,2),B(5,2),将ABCO绕O点逆时针方向旋转90°到A′B′C′O的位置,则点B′的坐标是( )
A.(﹣2,4)B.(﹣2,5)C.(﹣1,5)D.(﹣1,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④当y>0时,x的取值范围是﹣1<x<3;⑤当x>0时,y随x增大而减小.其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O交CA于点E,点G是AD的中点.
(1)求证:GE是⊙O的切线;
(2)若AC⊥BC,且AC=8,BC=6,求切线GE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com