分析 (1)利用角平分线的定义和邻补角的定义即可得出∠DAN的度数;
(2)利用有三个内角是直角的四边形是矩形的判断方法即可;
(3)利用邻边相等的矩形是正方形,求出正方形的边长,从而求出正方形的面积.
解答 ![]()
(1)证明:如图1,∵AB=AC,AD⊥BC,垂足为D,
∴∠CAD=$\frac{1}{2}∠$BAC.
∵AN是△ABC外角的平分线,
∴∠CAE=$\frac{1}{2}∠$CAM,
∵∠BAC与∠CAM是邻补角,
∴∠BAC+∠CAM=180°,
∴∠DAN=∠CAD+∠CAE=$\frac{1}{2}$(∠BAC+∠CAM)=90°,
(2)证明:∵AD⊥BC,CE⊥AN,∠DAN=90°,
∴∠ADC=∠CEA=∠DAN=90°,
∴四边形ADCE为矩形.![]()
(3)解:如图2,当△ABC是等腰直角三角形时,四边形ADCE是一个正方形.
∵∠BAC=90°,且AB=AC,AD⊥BC,
∴∠CAD=$\frac{1}{2}∠$BAC=45°,
∠ADC=90°,
∴∠ACD=∠CAD=45°,
∴AD=AC.
∵四边形ADCE为矩形,
∴四边形ADCE为正方形.
由勾股定理,得$\sqrt{{AD}^{2}{+CD}^{2}}$=AC,
∵AD=CD,
∴$\sqrt{2}$AD=3$\sqrt{2}$,
∴AD=3,
∴正方形ADCE的面积=AD2=3×3=9.
点评 本题是四边形的综合题,主要考查正方形的判断方法,涉及到知识有,等腰三角形的三线合一的性质,如由AB=AC,AD⊥BC得到∠CAD=$\frac{1}{2}∠$BAC,三角形的外角的平分线,勾股定理;本题的关键是整体计算∠DAN=∠CAD+∠CAE=$\frac{1}{2}$(∠BAC+∠CAM)=90°.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 50° | B. | 60° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com