精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).

(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t=s时,四边形PBQE为菱形;
②当t=s时,四边形PBQE为矩形.

【答案】
(1)证明:∵正六边形ABCDEF内接于⊙O,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,
∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,
∴AP=DQ=t,PF=QC=4﹣t,
在△ABP和△DEQ中,

∴△ABP≌△DEQ(SAS),
∴BP=EQ,同理可证PE=QB,
∴四边形PEQB是平行四边形
(2)2;0或4
【解析】(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.
②当t=0时,∠EPF=∠PEF=30°,
∴∠BPE=120°﹣30°=90°,
∴此时四边形PBQE是矩形.
当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.
综上所述,t=0s或4s时,四边形PBQE是矩形.
故答案为2s,0s或4s.
(1)根据正六边形的性质得出AB=DE,∠A=∠D,再根据点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,得出AP=DQ,就可证明△ABP≌△DEQ,可得BP=EQ,同理PE=BQ,由此即可证明结论。
(2)①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s;
②当t=0时,∠EPF=∠PEF=30°,得出∠BPE=90°,可证明此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形,即可得出答案。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,已知∠1+2=180°,∠2=B,试说明∠DEC+C=180°,请完成下列填空:

证明:∵∠1+2=180°(已知)

__________(____________________)

______=EFC(____________________)

又∵2=B(已知)

∴∠2=______(等量代换)

___________(内错角相等,两直线平行)

∴∠DEC+C=180°(两直线平行,同旁内角互补)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣ ;③(S四边形CDEF2=9+2 ;④DF2﹣DG2=7﹣2 .其中结论正确的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的推理过程,在括号内填上推理的依据,如图:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线m经过A40)、B3,﹣),直线n经过原点且与直线m相交于DD点的横坐标为﹣2

1)求直线mn的表达式;

2)求△OBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5BD=4,则以下四个结论中: ①△BDE是等边三角形; AEBC ③△ADE的周长是9 ④∠ADE=BDC.其中正确的序号是(  )

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是(
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1=∠2,∠C=∠D。

求证:∠A=∠F。

证明:∵∠1=∠2(已知),

又∠1=∠DMN(_______________),

∴∠2=∠_________(等量代换),

∴DB∥EC( ),

∴∠DBC+∠C=1800(两直线平行 , ),

∵∠C=∠D( ),

∴∠DBC+ =1800(等量代换),

∴DF∥AC( ,两直线平行),

∴∠A=∠F(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 学校“百变魔方”社团准备购买AB两种魔方,已知购买2A种魔方和6B种魔方共需130元,购买3A种魔方和4B种魔方所需款数相同.

(1)求这两种魔方的单价;

(2)结合社员们的需求,社团决定购买AB两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A种魔方多少个时,两种活动费用相同?

查看答案和解析>>

同步练习册答案