精英家教网 > 初中数学 > 题目详情

【题目】如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知EDCD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)

(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01, =2.236)

【答案】12米

【解析】

解:过点D作DF⊥AB于点F,过点C作CG⊥AB于点G,

∵ED⊥CD,CD∥AB,
∴D、E、F三点共线,
∴四边形CDFG是矩形,
∴CD=GF,DF=CG.
在Rt△ACG中,
∵坡度为1:2,
∴CG:AG=1:2,
∴AG:AC=2:
∵AC=20米,
∴AG=8 米,CG=4 米.
在Rt△CDE中,∠ECD=76°,设CD=x米,则ED=CDtan76°≈4.01x(米).
在Rt△EAF中,
∵∠EAF=45°,
∴EF=AF,即ED+DF=AG+GF,
∴4.01x+4 =8 +x,
∴x=2.99,
∴ED=4.01×2.99=12(米).
答:大树ED的高约为12米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠=∠EAF,∠BAE,则∠CEF________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′, C的对应点 C′恰好落在CB的延长线上,边AB交边 C′D′于点E.

(1)求证:BC=BC′;

(2) AB=2,BC=1,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一次测绘活动中,某同学站在点A处观测停放于BC两处的小船测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为______米(精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从DE两处测得路灯B的仰角分别为αβ,且tanα=6,tanβ=求灯杆AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一劳动节大酬宾!,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”、“10”、“20“50的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.

(1)该顾客至多可得到________元购物券

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 CD 在线段 AB PCD 是等边三角形,∠APB=120°

(1) 求证ACPPDB

(2) PC=3,AC=1,求 BD 的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,完成下列问题:

(1)在图中标出圆心D,则圆心D点的坐标为   

(2)连接AD、CD,则∠ADC的度数为   

(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.

查看答案和解析>>

同步练习册答案