【题目】某影院共有25排座位,第1排有11个座位数,从第2排开始,每一排都比前一排增加m个座位.
(1)请你在下表的空格里填写一个适当的代数式:
第1排的座位数 | 第2排的座位数 | 第3排的座位数 | … | 第n排的座位数 |
11 | 11+m | 11+2m | … | ______ |
(2)已知第18排座位数是第4排座位数的2倍,那么影院共有多少个座位?
【答案】(1)11+m(n﹣1);(2)575.
【解析】
(1)第n排座位数是11与m的序数减一积的和,据此可得;
(2)根据“第18排座位数是第4排座位数的2倍”列出关于m的方程,解之求得m=1,据此列出算式11+1+11+1×2+11+1×3+……+11+1×24,据此求解可得.
(1)根据题意知:
第1排的座位数 | 第2排的座位数 | 第3排的座位数 | … | 第n排的座位数 |
11 | 11+m | 11+2m | … | 11+m(n﹣1) |
(2)第18排座位数为11+17m,第4排座位数为11+3m,根据题意知:
11+17m=2(11+3m)
解得:m=1.
则影院的座位数为11+1+11+1×2+11+1×3+……+11+1×24
=25×11+1×(1+2+3+……+24)
=275+1×
=275+300
=575.
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AD是△ABC的高,且BD=CD.
(1)如图1,求证:∠BAD=∠CAD;
(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;
(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB 是⊙O 的直径,P 为 AB 延长线上的一点,PC 切⊙O 于点 C,AD⊥PC, 垂足为 D,弦 CE 平分∠ACB,交 AB 于点 F,连接 AE.
(1)求证:PC=PF;
(2)若 tan∠ABC=,AE=5,求线段 PC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:
甲:①连接OP,作OP的垂直平分线l,交OP于点A;
②以点A为圆心、OA为半径画弧、交⊙O于点M;
③作直线PM,则直线PM即为所求(如图1).
乙:①让直角三角板的一条直角边始终经过点P;
②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
③作直线PM,则直线PM即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A. 甲乙都对B. 甲乙都不对
C. 甲对,乙不对D. 甲不对,已对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩 | 人数(频数) | 百分比(频率) |
0 | ||
5 | 0.2 | |
10 | 5 | |
15 | 0.4 | |
20 | 5 | 0.1 |
根据表中已有的信息,下列结论正确的是( )
A. 共有40名同学参加知识竞赛
B. 抽到的同学参加知识竞赛的平均成绩为10分
C. 已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D. 抽到同学参加知识竞赛成绩的中位数为15分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.
(1)求证:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为4元的日用品,若按每件5元的价格销售,每天能卖出300件,若按每件6元的价格销售,每天能卖出200件,假定每天销售件数(件)与价格(元/件)之间满足一次函数关系.
(1)试求与之间的函数关系式;
(2)令每天的利润为,求出与之间的函数关系式;当销售价格定为多少时,才能使每天的利润最大?每天最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com