4£®ÎªÁËÍÆ¶¯¿ÎÌýÌѧ¸Ä¸ï£¬´òÔì¡°¹óÉú¿ÎÌá±£¬ÎÒÏØÄ³ÖÐѧ¶Ô¸ÃУ°ËÄê¼¶²¿·ÖѧÉú¾ÍһѧÆÚÒÔÀ´¡°·Ö×éºÏ×÷ѧϰ¡±·½Ê½µÄÖ§³Ö³Ì¶È½øÐе÷²é£¬Í³¼ÆÇé¿öÈçͼ£¬Çë¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©±¾´Îµ÷²éµÄ°ËÄê¼¶²¿·ÖѧÉú¹²ÓÐ54Ãû£»Ç벹ȫÌõÐÎͳ¼ÆÍ¼£»
£¨2£©Èô¸ÃУ°ËÄ꼶ѧÉú¹²ÓÐ540ÈË£¬ÇëÄã¹À¼Æ¸ÃУ°ËÄê¼¶ÓжàÉÙÃûѧÉúÖ§³Ö¡°·Ö×éºÏ×÷ѧϰ¡±·½Ê½£¨º¬¡°·Ç³£Ï²»¶¡±ºÍ¡°Ï²»¶¡±Á½ÖÖÇé¿öµÄѧÉú£©£¿

·ÖÎö £¨1£©¸ù¾Ýϲ»¶µÄÈËÊýÊÇ18ÈË£¬¸ù¾Ý¶ÔÓ¦µÄÔ²ÐĽǼ´¿ÉÇóµÃËùÕ¼µÄ±ÈÀý£¬ÀûÓÃ18³ýÒÔËùÕ¼µÄ±ÈÀý¼´¿ÉÇóµÃ×ÜÈËÊý£¬½ø¶øÇóµÃ·Ç³£Ï²»¶µÄÈËÊý£¬´Ó¶ø²¹È«ÌõÐÎͳ¼ÆÍ¼£»
£¨2£©ÀûÓÃ×ÜÈËÊý540³ËÒÔ¶ÔÓ¦µÄ±ÈÀý¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©±¾´Îµ÷²éµÄ°ËÄê¼¶²¿·ÖѧÉú¹²ÓÐ18¡Â$\frac{120¡ã}{360¡ã}$=54£¨ÈË£©£¬
¡°·Ç³£Ï²»¶¡±µÄÈËÊýΪ£º54-18-6=30£¨ÈË£©£¬
²¹È«ÌõÐÎͳ¼ÆÍ¼Èçͼ£º


£¨2£©$\frac{30+18}{54}$¡Á540=480£¨ÈË£©£¬
´ð£º¹À¼Æ¸ÃУ°ËÄê¼¶ÓÐ480ÃûѧÉúÖ§³Ö¡°·Ö×éºÏ×÷ѧϰ¡±·½Ê½£®
¹Ê´ð°¸Îª£º£¨1£©54£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÌõÐÎͳ¼ÆÍ¼ºÍÉÈÐÎͳ¼ÆÍ¼µÄ×ÛºÏÔËÓ㬶Á¶®Í³¼ÆÍ¼£¬´Ó²»Í¬µÄͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆÍ¼ÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£»ÉÈÐÎͳ¼ÆÍ¼Ö±½Ó·´Ó³²¿·ÖÕ¼×ÜÌåµÄ°Ù·Ö±È´óС£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªx2+4x+1=0£¬Çó´úÊýʽ£¨x-1£©2-2x£¨x+1£©+7µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁи÷ÊýÖУ¬0.$\stackrel{£®}{2}$$\stackrel{£®}{3}$£¬3.1415926£¬-$\root{3}{8}$£¬0.131131113¡­£¬-¦Ð£¬$\sqrt{25}$£¬-$\frac{1}{7}$£¬ÎÞÀíÊýµÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬µÈ±ß¡÷ABCÖУ¬µãPÔÚ¡÷ABCÄÚ£¬µãQÔÚ¡÷ABCÍ⣬ÇÒ¡ÏABP=¡ÏACQ£¬BP=CQ£®
£¨1£©ÇóÖ¤£º¡÷ABP¡Õ¡÷ACQ£®
£¨2£©Åжϡ÷APQµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬µãA£¨1£¬0£©£¬B£¨3£¬1£©£¬C£¨3£¬3£©£®·´±ÈÀýº¯Êýy=$\frac{m}{x}$£¨x£¾0£©µÄͼÏó¾­¹ýµãD£®£¨1£¬2£©
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©¾­¹ýµãCµÄÒ»´Îº¯Êýy=kx+b£¨k¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚPµã£¬µ±k£¾0ʱ£¬È·¶¨µãPºá×ø±êµÄȡֵ·¶Î§£¨²»±ØÐ´³ö¹ý³Ì£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬DÊÇ$\widehat{BC}$µÄÖе㣬DE¡ÍABÓÚE£¬½»CBÓÚµãF£®¹ýµãD×÷BCµÄƽÐÐÏßDM£¬Á¬½ÓAC²¢ÑÓ³¤ÓëDMÏཻÓÚµãG£®
£¨1£©ÇóÖ¤£ºGDÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÇóÖ¤£ºGD2=GC•AG£»
£¨3£©ÈôCD=6£¬AD=8£¬Çócos¡ÏABCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆËãÖÐÈô³öÏÖ$\sqrt{8}$¡¢$\sqrt{\frac{5}{2}}$µÈÕâÑùµÄÊýʱ£¬Òª¶ÔËüÃǽøÐл¯¼ò£¬Ê¹±»¿ª·½Êý²»º¬¿ªµÃ¾¡µÄÒòÊýºÍ·Öĸ£®
¼´$\sqrt{8}$=2$\sqrt{2}$£¬$\sqrt{\frac{5}{2}}$=$\frac{\sqrt{10}}{2}$£®
ʵ¼ÊÉÏ£¬ÔÚ½â¾öÎÊÌâʱ»¹¾­³£»á³öÏÖ$\frac{5}{\sqrt{2}}$¡¢$\frac{3}{\sqrt{5}+\sqrt{2}}$µÈÕâÑùµÄÊý£¨¼´·ÖĸÖк¬ÓиùºÅ£©£¬Èç¹û¶ÔËüÃǽøÐл¯¼ò£¬¿É¼ò»¯¼ÆË㣬ÎÒÃÇ¿ÉÕâÑù»¯¼ò£º$\frac{5}{\sqrt{2}}$=$\frac{5¡Á\sqrt{2}}{\sqrt{2}¡Á\sqrt{2}}$=$\frac{5\sqrt{2}}{2}$£®
$\frac{3}{\sqrt{5}+\sqrt{2}}$=$\frac{3£¨\sqrt{5}-\sqrt{2}£©}{£¨\sqrt{5}+\sqrt{2}£©£¨\sqrt{5}-\sqrt{2}£©}$=$\sqrt{5}$-$\sqrt{2}$£¬£¨¼´·Öĸ·ûºÏƽ·½²î¹«Ê½¼´¿É£©
¢ÙÀà±È´Ë·½·¨ÊÔÒ»ÊÔ£º$\frac{6}{\sqrt{3}}$=2$\sqrt{3}$£¬$\frac{2}{\sqrt{2}-1}$=2$\sqrt{2}$+2
¢Ú¼ÆËã$\frac{\sqrt{3}+1}{\sqrt{3}-1}$-£¨3$\sqrt{2}-2\sqrt{3}$£©£¨3$\sqrt{2}$+2$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â²»µÈʽ×é$\left\{\begin{array}{l}x-2¡Ü0\;\\ 2£¨{x-1}£©-£¨{x-3}£©£¾0\;\end{array}\right.$²¢Ð´³öËüµÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬½«³¤·½ÐÎÈÞÆ¬ÕÛµþ£¬ÕÛºÛΪEFºÍEG£¬µãAÂäÔÚA´¦£¬µãBÂäÔÚB¡ä´¦£¬ÇÒEA¡äºÍEB¡äÖØºÏ£®
£¨1£©¡ÏAEFÓë¡ÏBEGÓкÎÊýÁ¿¹ØÏµ£¿Çë˵Ã÷ÀíÓÉ£®
£¨2£©Èô¡ÏAEF=25¡ã43¡ä£¬Çó¡ÏB¡äEGµÄ²¹½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸