分析 首先连接BE、CF,延长CE交BD于点G,根据三角形的中位线定理,判断出∠MNE=∠FCE=∠FCD+∠DCEM,∠ENP=∠BEG;然后根据全等三角形判定的方法,判断出△BDE≌△∠CDF,即可判断出∠DBE=∠DCF;最后根据三角形的外角的性质,以及三角形的内角和定理,判断出∠ABD+∠MNP=180°即可.
解答 解:∠ABD+∠MNP=180°,
理由:如图,连接BE、CF,延长CE交BD于点G,
∵点N、M分别为EC、EF的中点,
∴MN是△CEF的中位线,
∴MN∥CF,
∴∠MNE=∠FCE=∠FCD+∠DCE,
∵点N、P分别为EC、BC的中点,
∴PN是△CBE的中位线,
∴PN∥BE,
∴∠ENP=∠BEG,
∵AB∥CD,
∴∠BDC=∠ABD,
又∵∠EDF=∠ABD,
∴∠BDC=∠EDF,
∴∠BDC-∠EDC=∠EDF-∠EDC,
即∠BDE=∠CDF,
∵∠A=∠DBC,∠ADB=∠DBC,
∴∠A=∠ADB,
∴AB=BD,
又∵AB=CD,
∴BD=CD,
在△BDE和△∠CDF中,
$\left\{\begin{array}{l}{BD=CD}\\{∠BDE=∠CDF}\\{DE=DF}\end{array}\right.$,
∴△BDE≌△∠CDF,
∴∠DBE=∠DCF,
根据三角形的外角的性质,可得
∠BGE=∠BDC+∠DCE,
在△BGE中,
∠BEG+∠BGE+∠GBE=180°,
∴∠ENP+(∠BDC+∠DCE)+∠DCF=180°,
∴(∠ENP+∠DCF+∠DCE)+∠BDC=180°,
又∵∠ENP+∠DCF+∠DCE=∠MNP,∠BDC=∠ABD,
∴∠ABD+∠MNP=180°.
点评 此题考查了平行四边形的性质、全等三角形的判定与性质、直角三角形的性质、等腰三角形的性质以及线段垂直平分线的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com