【题目】如图1,在矩形纸片ABCD中,AB=12cm,AD=20cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
【答案】(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为8cm.
【解析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;
(2)①由矩形的性质得出BC=AD=20cm,CD=AB=12cm,∠A=∠D=90°,由对称的性质得出CE=BC=20cm,在Rt△CDE中,由勾股定理求出DE=16cm,得出AE=AD-DE=4cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;
②当点Q与点C重合时,点E离点A最近,由①知,此时AE=4cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.
(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,
∴点B与点E关于PQ对称,
∴PB=PE,BF=EF,∠BPF=∠EPF,
又∵EF∥AB,
∴∠BPF=∠EFP,
∴∠EPF=∠EFP,
∴EP=EF,
∴BP=BF=EF=EP,
∴四边形BFEP为菱形;
(2)①∵四边形ABCD是矩形,
∴BC=AD=20cm,CD=AB=12cm,∠A=∠D=90°,
∵点B与点E关于PQ对称,
∴CE=BC=20cm,
在Rt△CDE中,DE==16cm,
∴AE=AD﹣DE=20cm﹣16cm=4cm;
在Rt△APE中,AE=4,AP=12﹣PB=12﹣PE,
∴EP2=42+(12﹣EP)2,
解得:EP=cm,
∴菱形BFEP的边长为cm;
②当点Q与点C重合时,如图2:
点E离点A最近,由①知,此时AE=4cm;
当点P与点A重合时,如图3所示:
点E离点A最远,此时四边形ABQE为正方形,AE=AB=12cm,
∴点E在边AD上移动的最大距离为8cm
科目:初中数学 来源: 题型:
【题目】如图,是的直径,是上一点,过作的切线,交的延长线于点,过作,交延长线于点,连接,交于点,交于点,连接.
(1)求证:;
(2)连接,若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.
(1)求每转动一次转盘所获购物券金额的平均数;
(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点、(点在点的左侧),经过点的直线:与轴交于点,与抛物线的另一个交点为.
(1)则点的坐标为__________,点的坐标为__________,抛物线的对称轴为__________;
(2)点是直线下方抛物线上的一点,当时.求面积的最大值;
(3)设为抛物线对称轴上一点,点在抛物线上,若以点、、、为顶点的四边形为矩形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师在数学课上带领同学们做数学游戏,规则如下:
游戏规则
甲任报一个有理数数传给乙;
乙把这个数减后报给丙;
丙再把所得的数的绝对值报给丁;
丁再把这个数的一半减,报出答案.
根据游戏规则,回答下面的问题:
(1)若甲报的数为,则乙报的数为_________,丁报出的答案是_________;
(2)若甲报的数为,请列出算式并计算丁报出的答案;
(3)若丁报出的答案是,则直接写出甲报的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重合).对于任意矩形 ABCD,下面四个结论中:①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④不存在四边形 MNPQ 是正方形.所有正确结论的序号是_________________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com