【题目】在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重合).对于任意矩形 ABCD,下面四个结论中:①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④不存在四边形 MNPQ 是正方形.所有正确结论的序号是_________________ .
【答案】①②③
【解析】
根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.
解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,
过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,
则四边形MNPQ是平行四边形,
故存在无数个四边形MNPQ是平行四边形;故正确;
②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;
③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;
④当四边形MNPQ是正方形时,MQ=PQ,
则△AMQ≌△DQP,
∴AM=QD,AQ=PD,
∵PD=BM,
∴AB=AD,
∴四边形ABCD是正方形,
当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,点为直线上一动点(点不与、重合).以为边向右侧作正方形,连结.
(猜想)如图①,当点在线段上时,直接写出、、三条线段的数量关系.
(探究)如图②,当点在线段的延长线上时,判断、、三条线段的数量关系,并说明理由.
(应用)如图③,当点在线段的反向延长线上时,点、分别在直线两侧,、交点为点连结,若,,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=12cm,AD=20cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在直线上,过点作,且,点在射线上(点不与点重合),且满足,,与交于点,过点作于点.设.
(1)用含的代数式表示的长;
(2)①线段的长是________;
②线段的长是_________;(用含的代数式表示)
(3)当为何值时,有最小值?并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.
(1)求抛物线的解析式;
(2)如图①所示, 是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;
(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知抛物线y= x2 -2px+q.
(1)当p=2 时,
①抛物线的顶点坐标横坐标为____ ___,纵坐标为__________(用含 q 的式子表示);
②若点 A(-1,y1),B(x2,y2 )都在抛物线上,且y2 >y1,令x2 = m,则 m的取值范围是_____________;
(2)已知点 M(3,2),将点 M 向左平移 5 个单位长度,得到点 N.当q=6 时,若抛物线与线段 MN 恰有一个公共点,结合函数图象,求 p 的取值范围为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意,完成本题的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件10元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其函数图像如图所示.
(1)求商场每天销售这种商品的销售利润y(元)与每件的销售价x(元)之间的函数解析式;
(2)试判断,每件商品的销售价格在什么范围内,每天的销售利润随着价格的提高而增加.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,点在轴上,以点为直角顶点作等腰直角..当点落在某函数的图象上时,称点为该函数的“悬垂点”,为该函数的“悬垂等腰直角三角形”.
(1)若点是函数的悬垂点,直接写出点的横坐标为________.
(2)若反比例函数的悬垂等腰直角三角形面积是,求的值.
(3)对于函数,当时,该函数的悬垂点只有一个,求的取值范围.
(4)若函数的悬垂等腰直角的面积范围为,且点在第一象限,直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com