【题目】如图,在等腰中,点为直线上一动点(点不与、重合).以为边向右侧作正方形,连结.
(猜想)如图①,当点在线段上时,直接写出、、三条线段的数量关系.
(探究)如图②,当点在线段的延长线上时,判断、、三条线段的数量关系,并说明理由.
(应用)如图③,当点在线段的反向延长线上时,点、分别在直线两侧,、交点为点连结,若,,则 .
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,是上一点,过作的切线,交的延长线于点,过作,交延长线于点,连接,交于点,交于点,连接.
(1)求证:;
(2)连接,若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点为坐标原点,将含30°角的放在第一象限,其中30°角的对边长为1,斜边的端点,分别在轴的正半轴,轴的正半轴上滑动,连接,则线段的长的最大值是( )
A.2B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点,,线段与轴平行,且,抛物线
(1)当时,求该抛物线与轴的交点坐标;
(2)当时,求的最大值(用含的代数式表示);
(3)当抛物线经过点时,的解析式为__________,顶点坐标为__________,点__________(填“是”或“否”)在上.
若线段以每秒2个单位长的速度向下平移,设平移的时间为(秒).
①若与线段总有公共点,求的取值范围;
②若同时以每秒3个单位长的速度向下平移,在轴及其右侧的图象与直线总有两个公共点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;
(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.
(1)求每转动一次转盘所获购物券金额的平均数;
(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点、(点在点的左侧),经过点的直线:与轴交于点,与抛物线的另一个交点为.
(1)则点的坐标为__________,点的坐标为__________,抛物线的对称轴为__________;
(2)点是直线下方抛物线上的一点,当时.求面积的最大值;
(3)设为抛物线对称轴上一点,点在抛物线上,若以点、、、为顶点的四边形为矩形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重合).对于任意矩形 ABCD,下面四个结论中:①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④不存在四边形 MNPQ 是正方形.所有正确结论的序号是_________________ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com