精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰中,为直线上一动点(不与重合).以为边向右侧作正方形,连结

(猜想)如图①,当点在线段上时,直接写出三条线段的数量关系.

(探究)如图②,当点在线段的延长线上时,判断三条线段的数量关系,并说明理由.

(应用)如图③,当点在线段的反向延长线上时,点分别在直线两侧,交点为点连结,若,则    

【答案】[猜想][探究],理由见解析;[应用]

【解析】

[猜想]根据正方形的性质得到∠BAC=∠DAF90°,推出,根据全等三角形的性质即可得到结论;
[探究]根据正方形的性质得到∠BAC=∠DAF90°,推出,根据全等三角形的性质可得到结论.

[应用]根据题意计算出BC的值,通过得到,由勾股定理得出DF的值,再由直角三角形斜边上的中线的性质得到CO的值即可.

[猜想].证明如下:

是等腰直角三角形.

四边形为正方形

[探究]

是等腰直角三角形.

四边形为正方形

[应用]

同理可得

中,

在正方形中,中点

∴在中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,有下列结论:①abc0;②2a+b0;③若m为任意实数,则a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,则x1+x22.其中,正确结论的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,上一点,过的切线,交的延长线于点,过,交延长线于点,连接,交于点,交于点,连接

1)求证:

2)连接,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点为坐标原点,将含30°角的放在第一象限,其中30°角的对边长为1,斜边的端点分别在轴的正半轴,轴的正半轴上滑动,连接,则线段的长的最大值是(

A.2B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点,线段轴平行,且,抛物线

1)当时,求该抛物线与轴的交点坐标;

2)当时,求的最大值(用含的代数式表示);

3)当抛物线经过点时,的解析式为__________,顶点坐标为__________,点__________(填“是”或“否”)在上.

若线段以每秒2个单位长的速度向下平移,设平移的时间为(秒).

①若与线段总有公共点,求的取值范围;

②若同时以每秒3个单位长的速度向下平移,轴及其右侧的图象与直线总有两个公共点,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阳光体育活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.

1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;

2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.

(1)求每转动一次转盘所获购物券金额的平均数;

(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴交于点(在点的左侧),经过点的直线轴交于点,与抛物线的另一个交点为

1)则点的坐标为__________,点的坐标为__________,抛物线的对称轴为__________

2)点是直线下方抛物线上的一点,当时.求面积的最大值;

3)设为抛物线对称轴上一点,点在抛物线上,若以点为顶点的四边形为矩形,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形 ABCD 中,MNPQ 分别为边 ABBCCDDA 上的点(不与端点重合).对于任意矩形 ABCD,下面四个结论中:①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④不存在四边形 MNPQ 是正方形.所有正确结论的序号是_________________

查看答案和解析>>

同步练习册答案