【题目】已知:如图,点,,线段与轴平行,且,抛物线
(1)当时,求该抛物线与轴的交点坐标;
(2)当时,求的最大值(用含的代数式表示);
(3)当抛物线经过点时,的解析式为__________,顶点坐标为__________,点__________(填“是”或“否”)在上.
若线段以每秒2个单位长的速度向下平移,设平移的时间为(秒).
①若与线段总有公共点,求的取值范围;
②若同时以每秒3个单位长的速度向下平移,在轴及其右侧的图象与直线总有两个公共点,直接写出的取值范围.
【答案】(1),;(2)当时, 有最大值0,当时,有最大值;(3),,否;①;②.
【解析】
(1)当k=1时,该抛物线解析式y=x2-2x-3,y=0时,x2-2x-3=0,解得x1=-1,x2=3,该抛物线与x轴的交点坐标(-1,0),(3,0);
(2)抛物线y=kx2-2kx-3k的对称轴直线x==1,当k>0时,x=3时,y有最大值,y最大值=9k-6k-3k=0,当k<0时,x=1时,y有最大值,y最大值=k-2k-3k=-4k;
(3)当抛物线经过点C(0,3)时,抛物线的解析式为y=-x2+2x+3,顶点坐标(1,4),A(-4,-1),将x=-2代入y=-x2+2x+3,y=-5≠-1,点B不在l上;
①设平移后B(-2,-1-2t),A(-4,-1-2t),当抛物线经过点B时,有y=-5,当抛物线经过点A时,有y=-21,l与线段AB总有公共点,则-21≤-1-2t≤-5,解得2≤t≤10;
②平移过程中,设C(0,3-3t),则抛物线的顶点(1,4-3t),于是 ,解得4≤t<5.
解:(1)当时,抛物线解析式为,
当时,,解得,,
所以该抛物线与轴的交点的坐标为,,
(2)抛物线的对称轴为直线,
当时,时,,有最大值0,
当时,时,,有最大值;
(3),否;
①设点的坐标为,点的坐标为,
当抛物线经过点时,有,
当抛物线经过点时,有,
当抛物线与线段总有公共点时,有,
解得:.
②.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式与点B坐标;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的直径AB垂直弦CD于点E,过C点作CG∥AD交AB延长线于点G,连结CO并延长交AD于点F,且CF⊥AD.
(1)求证:CG是⊙O的切线;
(2)若AB=4,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=.
(1)求b的值;
(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=∠FEH,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正的边长为2,顶点、在半径为的圆上,顶点在圆内,将正绕点逆时针旋转,当点第一次落在圆上时,则点运动的路线长为__________(结果保留);若点落在圆上记做第1次旋转,将绕点逆时针旋转,当点第一次落在圆上记做第2次旋转,再绕将逆时针旋转,当点第一次落在圆上,记做第3次旋转……,若此旋转下去,当完成第2018次旋转时,边共回到原来位置__________次.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,点为直线上一动点(点不与、重合).以为边向右侧作正方形,连结.
(猜想)如图①,当点在线段上时,直接写出、、三条线段的数量关系.
(探究)如图②,当点在线段的延长线上时,判断、、三条线段的数量关系,并说明理由.
(应用)如图③,当点在线段的反向延长线上时,点、分别在直线两侧,、交点为点连结,若,,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连接CE,AE,CD,若∠AEC=∠ODC.
(1)求证:直线CD为⊙O的切线;
(2)若AB=10,BC=8,则线段CD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.
(1)求抛物线的解析式;
(2)如图①所示, 是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;
(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com