精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右依次记为A1、A2、A3、…、An,已知第1个正方形中的一个顶点A1的坐标为(1,1),则点A2019的纵坐标为( )

A. 2019 B. 2018 C. 22018 D. 22019

【答案】C

【解析】

根据直线解析式可知直线与x轴的夹角为45°,从而得到直线、正方形的边与x轴围成的三角形是等腰直角三角形,根据点A1的坐标为(1,1),可依次求出正方形的边长并得到点坐标的变化规律.

由函数y=x的图象的性质可得直线与x轴的夹角为45°,

直线、正方形的边与x轴围成的三角形是等腰直角三角形,

A1的坐标为(1,1),

∴第一个正方形的边长为1,第二个正方形的边长为1+1=2,

A2的坐标为(2,2),

第二个正方形的边长为2,

第三个正方形的边长为2+2=22

A3的坐标为(2222),

同理可求:

A4的坐标为(2323),

An的坐标为(2n-12n-1),

A2019的坐标为(2201822018 ),

A2019的纵坐标为22018.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,所有小正方形的边长都为1ABC都在格点上.

1)过点C画直线AB的平行线(不写画法,下同);

2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H

3)线段_____的长度是点A到直线BC的距离;

4)线段AGAH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.

(1)求证:四边形BDEF为平行四边形;
(2)当∠C=45°,BD=2时,求D,F两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.

(1)求证:AB=CD;
(2)求证:CD2=BEBC;
(3)当CG= ,BE= 时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,E是直线ABCD内部一点,ABCD,连接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,则∠AED= °

②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.

(2)拓展应用:

如图②,射线FEl1l2交于分别交于点EFABCDabcd分别是被射线FE隔开的4个区域(不含边界,其中区域ab位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知4m=a8n=b,用含ab的式子表示下列代数式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一条直线上从左往右依次有ABCD四个点.

1)如果线段ACBCBD的长分别为3a-ba+b4a-2b,试求AD两点间的距离;

2)如果将这条直线看作是以点C为原点的数轴(向右为正方向).

①直接写出数轴上与点B距离为a+2b的点所表示的数______

②设线段BD上一动点P所表示的数为x,求|x+a+b|+|x-3a+3b|的值(用含ab的代数表示);

③线段BD上有两个动点PM,点P所表示的数为x,点M所表示的数为y,直接写出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含ab的代数表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同,他们将一头骆驼前两昼夜的体温变化情况绘制成右图,请根据图象回答:

1)在这个问题中,自变量是什么?因变量是什么?

2)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?

3)第三天12时这头骆驼的体温是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

如图1,抛物线y=ax2+bx+ ,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.
(1)求抛物线的解析式;
(2)在x轴上方的抛物线上是否存在点M,是SABM= SABC?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.
①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;
②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).

查看答案和解析>>

同步练习册答案