【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE,连接OC.
(1)求证:DE是⊙O的切线;
(2)若⊙O半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).
【答案】(1)答案见解析;(2)
【解析】试题分析:由OA=OC,根据等腰三角形的性质可得∠OAC=∠OCA .根据角平分线的定义可得∠OAC=∠CAE ,所以∠OCA=∠CAE ,即可判定OC∥AE ,再由AE⊥DE ,即可得∠E =90°=∠OCD,结论得证;(2)在Rt△ODC中,求得OD、CD的长,再由S阴影=S△OCD-S扇形OBC即可求得图中阴影部分的面积.
试题解析:
(1)证明:
∵OA=OC,
∴∠OAC=∠OCA .
∵AC平分∠BAE,
∴∠OAC=∠CAE ,
∴∠OCA=∠CAE ,
∴OC∥AE ,
∴∠OCD=∠E .
∵AE⊥DE ,
∴∠E =90°=∠OCD,
即OC⊥CD ,
∴CD是圆O的切线.
(2)在Rt△ODC中,
∵∠D=30°,OC=4,
∴∠COD=60°,OD=2OC=8
∴,
∴S阴影=S△OCD-S扇形OBC= .
科目:初中数学 来源: 题型:
【题目】阅读材料:设一元二次方程 (≠0)的两根为, ,则两根与方程的系数之间有如下关系:
+=-, ·=.根据该材料完成下列填空:
已知, 是方程的两根,则(1)+ =_________, __________;(2)()()=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是甲、乙两班参加“学法、用法知识竞赛”活动中各题答对人数的折线统计图,下列结论错误的是( )
A. 甲班答对第二题和第五题的人数相等
B. 甲班答对第三题的人数和乙班答对第三题的人数相等
C. 甲班答对第四题的人数比乙班答对第四题的人数少2人
D. 甲班答对各题的人数都比乙班的多
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化妆品专卖店,为了吸引顾客,准备在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满元,均可得到一次摇奖的机会.已知在摇奖机内装有个红球和个白球,除颜色外其它都相同,摇奖者必须从摇奖机中一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如下表):
()请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
()如果一个顾客当天在本店购物满元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com