【题目】如图所示,点P位于等边△ABC的内部,且∠ACP=∠CBP.
(1)延长BP至点D,使得PD=PC,连接AD,CD.
①依题意,补全图形;
②证明:AD+CD=BD;
(2)在(1)的条件下,若BD的长为2,求四边形ABCD的面积.
【答案】(1)①见解析;②见解析;(2)
【解析】
(1)①利用延长线作法得出D点位置,并连接AD,CD.
②先证明△CDP是等边三角形,再证明∠DCA≌△PCB,然后利用全等三角形的性质解答即可;
(2)作CM⊥BD于M,AN⊥BD于N,由锐角三角函数的知识得CM=CDsin60°,AN=ADsin60°,然后根据S四边形ABCD=S△BDC+S△BDA计算即可.
解:(1)①如图所示,
②证明::∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠PCA+∠PCB=60°,
∵∠PCA=∠CBP,
∴∠PCB+∠PBC=60°,
∴∠BPC=180°-60°=120°,
∵∠CPD=180°-∠BPC=60°,PD=PC,
∴△CDP是等边三角形,
∴CD=CP,∠DCP=∠ACB=60°,
∴∠DCA=∠PCB,
∴△DCA≌△PCB(SAS),
∴AD=PB,
∴BD=PB+PD=AD+DC;
(2)如图,作CM⊥BD于M,AN⊥BD于N.
∵△DCA≌△PCB,
∴∠ADC=∠BPC=120°,
∴∠ADP=60°,
∴CM=CDsin60°,AN=ADsin60°,
∴S四边形ABCD=S△BDC+S△BDA
=BDCM+BDAN
=BDsin60°(CD+AD)
=×2××2=.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数 的图像过点A(-4,3),B(4,4).
(1)求抛物线二次函数的解析式.
(2)求一次函数直线AB的解析式.
(3)看图直接写出一次函数直线AB的函数值大于二次函数的函数值的x的取值范围.
(4)求证:△ACB是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,D是⊙O上一点,连接BD、CD、AC、BD交于点E.
(1)请找出图中的相似三角形,并加以证明;
(2)若∠D=45°,BC=2,求⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2,则a的值是( )
A. 2B. 2+2C. 2D. 2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.
(1)求证:HB是⊙O的切线;
(2)若HB=4,BC=2,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:
月用水量(m3) | 4 | 5 | 6 | 8 | 9 |
户数 | 4 | 5 | 7 | 3 | 1 |
则关于这20户家庭的月用水量,下列说法错误的是( )
A.中位数是6mB.平均数是5.8m
C.众数是6mD.极差是6m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:
每人加工零件个数 | 540 | 450 | 300 | 240 | 210 | 120 |
人数 | 1 | 1 | 2 | 6 | 3 | 2 |
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com