精英家教网 > 初中数学 > 题目详情

【题目】如图,某学生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动10米到B处,测得∠EBF=30°,∠CBD=45°,tan∠CAD=
(1)求旗杆EF的高(结果保留根号);
(2)求旗杆EF与实验楼CD之间的水平距离DF的长.

【答案】
(1)解:∵∠EAF=60°,然后向左移动10米到B处,测得∠EBF=30°,∠CBD=45°,tan∠CAD=

∴tan60°= ,tan30°=

解得,EF=5 ,AF=5,

即旗杆EF的高为5


(2)解:∵∠EAF=60°,然后向左移动10米到B处,测得∠EBF=30°,∠CBD=45°,tan∠CAD= ,AF=5,

∴CD=BD,

设CD=3a,则BD=3a,AD=4a,

∴AB=a=10,

∴BD=3a=30,

∴DF=AD+AF=40+5=45,

即旗杆EF与实验楼CD之间的水平距离DF的长是45米


【解析】(1)根据题目中的数据和锐角三角函数可以求得EF和AF的长,从而可以解答本题;(2)根据题目中的数据和锐角三角函数可以求得AD和AF的长,从而可以得到旗杆EF与实验楼CD之间的水平距离DF的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是(  )

A. β﹣α=60° B. β+α=210° C. β﹣2α=30° D. β+2α=240°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,填空:

(1)若∠4=∠3,则_________,理由是______

(2)若∠2=∠E,则_______,理由是____

(3)若∠A=∠ABE=180°,则_______,理由是____

(4)若∠2=∠____,则DA∥EB,理由是____

(5)若∠DBC+∠_____=180°,则DB∥EC,理由是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴分别为两点,点与点关于轴对称.动点分别在线段上(点不与点重合),满足.

(1)点坐标是      

(2)当点在什么位置时,,说明理由.

(3)当为等腰三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.

(1)每个文具盒、每支钢笔各多少元?

(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.
(1)用尺规补全图形(保留作图痕迹,不写作法);
(2)求证:BC与⊙O相切;
(3)当AD= ,∠CAD=30°时,求劣弧AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校进行“宪法知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到如图所示的条形统计图,请结合统计图回答下列问题:

(1)该校抽样调查的学生人数为________人,抽样中考生分数的中位数所在等级是________;

(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O在直线MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与理解: 图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.

操作与证明:
(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
猜想与发现:
根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?

查看答案和解析>>

同步练习册答案