精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为(
A.1
B.
C.
D.2

【答案】C
【解析】解:如图,连接EC.
∵FC垂直平分BE,
∴BC=EC(线段垂直平分线的性质)
又∵点E是AD的中点,AE=1,AD=BC,
故EC=2,
利用勾股定理可得AB=CD= =
故选:C.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和勾股定理的概念的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:﹣(﹣1)=(  )

A.±1B.2C.1D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个四边形三个内角度数之比为2∶1∶3第四个内角为60°那么这三个内角的度数分别为______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)画出△ABC关于y轴对称的△A1B1C1

(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线交x轴于点A,交y轴于点C(0,4),抛物线经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.

(1)求抛物线的解析式;

(2)当△BDP为等腰直角三角形时,求线段PD的长;

(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果,△ABC旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是(
A.13cm
B.18cm
C.21cm
D.18cm或21cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各数中互为相反数的是( )
A. 和-
B.
C.
D.

查看答案和解析>>

同步练习册答案