【题目】如图,点在双曲线上,垂直轴,垂足为,点在上,平行于轴交双曲线于点,直线与轴交于点,已知,点的坐标为.
(1)求反比例函数和一次函数的表达式;
(2)直接写出反比例函数值大于一次函数值时自变量的值范围.
【答案】(1);y=x-1;(2)或.
【解析】
(1)由点C的坐标为(3,2)得AC=2,而AC:AD=1:3,得到AD=6,则D点坐标为(3,6),然后利用待定系数法确定双曲线的解析式,把y=2代入求得B的坐标,然后根据待定系数法即可求得直线AB的解析式;
(2)解析式联立,解方程组求得另一个交点坐标,然后利用图象即可求得.
(1)∵点的坐标为,
∴,.
∵,
∴,
∴点的坐标为,
设该双曲线的解析式为,
∴,
∴该双曲线的解析式为;
设直线AB的解析式为,
∵CB平行于x轴交曲线于点B,
∴B点纵坐标为2,
代入求得,
∴B(9,2),
把A(3,0)和B(9,2)代入y=kx+b得,
3k+b=0,9k+b=2,
解得:k=,b=-1,
∴直线AB的解析式为y=x-1;
(2)解得或,
∴反比例函数与一次函数的另一个交点为(-6,-3),
∴根据图象,当x<-6或0<x<9时,反比例函数的图象在一次函数值的上方,
∴反比例函数值大于一次函数值时自变量的取值范围x<-6或0<x<9.
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于点和点,交轴于点.已知点的坐标为,点为第二象限内抛物线上的一个动点,连接、、.
(1)求这个抛物线的表达式.
(2)当四边形面积等于4时,求点的坐标.
(3)①点在平面内,当是以为斜边的等腰直角三角形时,直接写出满足条件的所有点的坐标;
②在①的条件下,点在抛物线对称轴上,当时,直接写出满足条件的所有点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是锐角△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.下列结论:①AF平分∠BAC;②点F为△BDC的外心;③;④若点M,N分别是AB和AF上的动点,则BN+MN的最小值是ABsin∠BAC.其中一定正确的是_____(把你认为正确结论的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(为正整数,且)与轴的交点为和,,当时,第1条抛物线与轴的交点为和,其他依次类推.
(1)求,的值及抛物线的解析式;
(2)抛物线的顶点的坐标为( , );依次类推,第条抛物线的顶点的坐标为( , );所有抛物线的顶点坐标满足的函数关系式是 ;
(3)探究下列结论:
①是否存在抛物线,使得为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由;
②若直线与抛物线分别交于则线段,,…则线段,,…的长有何规律?请用含的代数式表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.
例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.
(1)填空:对称点函数一个友好点是(3,3),则b= ,c= ;
(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;
(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自主学习,请阅读下列解题过程.
例:用图象法解一元二次不等式:.
解:设,则是的二次函数.
抛物线开口向上.
又当时,,解得.
由此得抛物线的大致图象如图所示.
观察函数图象可知:当或时,.
的解集是:或.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的 和 .(只填序号)①转化思想,②分类讨论思想,③数形结合思想
(2)观察图象,直接写出一元二次不等式:的解集是 ;
(3)仿照上例,用图象法解一元二次不等式:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答下列问题:
(1)这次被调查的学生共有多少人?
(2)请将条形统计图补充完整;
(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com