【题目】如图,抛物线交轴于点和点,交轴于点.已知点的坐标为,点为第二象限内抛物线上的一个动点,连接、、.
(1)求这个抛物线的表达式.
(2)当四边形面积等于4时,求点的坐标.
(3)①点在平面内,当是以为斜边的等腰直角三角形时,直接写出满足条件的所有点的坐标;
②在①的条件下,点在抛物线对称轴上,当时,直接写出满足条件的所有点的坐标.
【答案】(1);(2)或;(3)①,;②,(-1,5).
【解析】
(1)设抛物线的表达式为:y=a(x+3)(x1)=a(x2+2x3)=ax2+2ax3a,即3a=2,解得:a=,即可求解;
(2)设点P(x,),根据S=S四边形ADCP=S△APO+S△CPOS△ODC=4列出方程即可求解;
(3)①根据等腰直角三角形的性质,构造全等三角形即可求出M的坐标;
②根据题意作图,根据①所求的M点坐标结合圆周角的性质与等腰直角三角形的性质即可确定N点坐标.
(1)∵抛物线经过点和点
设抛物线的表达式为:y=a(x+3)(x1)=a(x2+2x3)=ax2+2ax3a,
∴3a=2,解得:a=,
故抛物线的表达式为:;
(2)令x=0,得y=2
∴点C(0,2),
函数的对称轴为:x=- =-1;
连接OP,设点P(x,),
则S=S四边形ADCP=S△APO+S△CPOS△ODC
=×AO×yp+×OC×|xP|×CO×OD
=×3×()+×2×(x) ×2×1
=x23x+2,
∵四边形面积等于4,
∴x23x+2=4
解得x1=-1,x2=-2,
∴P或;
(3) ①如图,∵△CDM1是以CM1为斜边的等腰直角三角形,
∴CD=DM1,∠CDM=90°,
∴∠QDM1+∠CDO=90°
作M1Q⊥AB于Q点,
∴∠QDM1+∠QM1D=90°
∴∠CDO=∠QM1D
又∠DQM1=∠COD=90°
∴△DQM1≌△COD
QD=CO=2,M1Q=DO=1
∴OD=3, M1Q=1
∴M1(-3,1)
由图形及等腰直角三角形的性质可知M1、M2关于D点对称,
设M2(p,q)
∴,
解得p=1,q=-1
∴M2(1,-1)
综上M的坐标为,;
②如图,∵=90°,当=可知N点为对称轴直线x=-1与以圆D为圆心,DM2为半径的圆的交点,即N1,N2
∵r=DM2=
∴N1(-1,-),N2(1,);
如图,当时,
由①可得,,
∴,CD=DM1=DM2,
∴CM1=CM2,
则△是等腰直角三角形,
则
∴△是等腰直角三角形,
则N3,M2关于C点对称,
设N3(x,y)
则,
解得x=-1,y=5
∴N3(-1,5)
综上,N点坐标为:,(-1,5).
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴相交于点A(-1,0),B(4,0),与轴相交于点C.
(1)求该函数的表达式;
(2)若点P(2,m)为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC,求线段PQ的长;
(3)在(2)的条件下,点M为该函数图象上一点,且∠MAP=45°,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a、b、c为正数,若关于x的一元二次方程ax2+bx+c=0有两个实数根,则关于x的方程a2x2+b2x+c2=0解的情况为( )
A.有两个不相等的正根B.有一个正根,一个负根
C.有两个不相等的负根D.不一定有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.
(1)求实数k的取值范围.
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的,,,四个小区进行检査,并且每个小区不重复检查.
(1)甲组抽到小区的概率是___________;
(2)请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“泥兴陶,,是钦州的一张文化名片。钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只。后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只。若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:
(1)每只杯应降价多少元?
(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小红遇到这样一个问题:如图1,在四边形ABCD中,∠A=∠C=90°,∠D=60°,AB=,BC=,求AD的长.
小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).
请回答:AD的长为 .
参考小红思考问题的方法,解决问题:
如图3,在四边形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在双曲线上,垂直轴,垂足为,点在上,平行于轴交双曲线于点,直线与轴交于点,已知,点的坐标为.
(1)求反比例函数和一次函数的表达式;
(2)直接写出反比例函数值大于一次函数值时自变量的值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球试验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出1个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次摸球试验汇总后统计的数据:
摸球的次数 | 150 | 200 | 500 | 900 | 1 000 | 1 200 |
摸到白球的频数 | 51 | 64 | 156 | 275 | 303 | 361 |
摸到白球的频率 | 0.320 | 0.312 | 0.306 | 0.303 | 0.302 | 0.301 |
(1)请估计:当摸球的次数很大时,摸到白球的频率将会接近______;假如你去摸一次,你摸到红球的概率是______;(精确到0.1)
(2)试估计口袋中红球有多少个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com