精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与 x之间函数关系的图象是(     )
B

试题分析:重叠部分为正方形,,当时,此时,重叠部分面积为,即函数图象为抛物线时的图象,面积最大值1;为当,此时重叠面积固定,为小正方形面积,面积为1;当,此时重叠部分面积为,即函数图象为抛物线时的图象,面积最小为0,综上,可以知道为B选项
点评:此题要观察函数的变化,可以用分段函数概括
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)  一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

①求抛物线的解析式及顶点D的坐标;
②判断△ABC的形状,证明你的结论;
③点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。

(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.
①填写下表,画出函数的图象;
x




1
2
3
4

y

 
 
 
 
 
 
 


②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象上有A(),B(),C(2,)三个点,则的大小关系是(   )。
A.>>B.>>C.>>D.>>

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数是不为0的常数.
(1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点;
(2)如果该二次函数的顶点不在直线的右侧,求的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图,若一元二次方程
有实数根,则以下关于的结论正确的是(  )
A.m的最大值为2 B.m的最小值为-2
C.m是负数  D.m是非负数

查看答案和解析>>

同步练习册答案