精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知反比例函数y= (x>0)的图象和菱形OABC,且OB=4,tan∠BOC=

(1)求A、B、C三点的坐标;
(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.

【答案】
(1)解:连接AC,交y轴于D,

∵四边形形OABC是菱形,

∴AC⊥OB,OD=BD,AD=CD,

∵OB=4,tan∠BOC=

∴OD=2,CD=1,

∴A(﹣1,2),B(0,4),C(1,2)


(2)解:B、C落在反比例函数的图象上,

设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),

∵B、C落在反比例函数的图象上,

∴k=4x=2(1+x),

解得x=1,

即菱形平移后B的坐标是(1,4),

代入反比例函数的解析式得:k=1×4=4,

即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=


【解析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:4sin60°﹣|3﹣ |+( 2
(2)解方程:x2 x﹣ =0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线L:y=ax2+2(a﹣1)x﹣4(常数a>0)经过点A(﹣2,0)和点B(0,﹣4),与x轴的正半轴交于点E,过点B作BC⊥y轴,交L于点C,以OB,BC为边作矩形OBCD.

(1)当x=2时,L取得最低点,求L的解析式.
(2)用含a的代数式分别表示点C和点E的坐标;
(3)当S矩形OBCD=4时,求a的值.
(4)如图2,作射线AB,OC,当AB∥OC时,将矩形OBCD从点O沿射线OC方向平移,平移后对应的矩形记作O′B′C′D′,直接写出点A到直线BD′的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.

(1)求证:BD=BC;
(2)若BD=6cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.
(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.
(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则 的值是(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.
(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)

(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);
(2)用方向和距离描述灯塔P相对于B处的位置.

查看答案和解析>>

同步练习册答案