分析 (1)根据将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,若∠A=40°,可以求得∠AED+∠ADE=∠A′ED+∠A′DE,进而可以求得∠1+∠2的度数;
(2)先写出数量关系,然后说明理由,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,可以得到折叠后的各个角的关系,从而可以解答本题;
(3)根据第二问的推导,可以进行这一问结论的推导,从而可以解答本题.
解答 解:(1)∵∠A=40°,
∴∠AED+∠ADE=∠A′ED+∠A′DE=140°,
∴∠1+∠2=360°-(∠AED+∠ADE)-(∠A′ED+∠A′DE)=80°,
即∠1+∠2的度数是80°;
(2)∠1+∠2=2∠A,
理由:∵将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,
∴∠AED+∠ADE=∠A′ED+∠A′DE,∠A=∠A′,
∴∠1+∠2
=360°-(∠AED+∠ADE)-(∠A′ED+∠A′DE)
=360°-(180°-∠A)-(180°-∠A′)
=360°-180°+∠A-180°+∠A′
=2∠A,
即∠1+∠2=2∠A;
(3)①由题意可得,∠α+∠β+∠γ=360°-180°=180°,
∠1+∠2+∠3+∠4+∠5+∠6=2∠A+2∠B+2∠C=2(∠A+∠B+∠C)=2×180°=360°,
故答案为:180°,360°;
②如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论仍然成立;
理由:∵∠1+∠2=2∠A,∠3+∠4=2∠B,∠5+∠6=2∠C,
∴∠1+∠2+∠3+∠4+∠5+∠6
=2∠A+2∠B+2∠C
=2(∠A+∠B+∠C)
=360°,
即如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论仍然成立.
点评 本题考查翻折问题、角的计算,解题的关键是明确题意,找出所求问题需要的条件.
科目:初中数学 来源: 题型:解答题
| 质量(单位:克) | +6 | +5 | +4 | +3 | +2 | +1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| 袋装(单位:袋) | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 3 | 2 | 1 | 0 | 1 | 0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{c}{a+b}$ | B. | $\frac{b}{a+b+c}$ | C. | $\frac{a+c}{a+b+c}$ | D. | $\frac{a+c}{b}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com