【题目】(2016广西桂林市)已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
科目:初中数学 来源: 题型:
【题目】如图,动点、分别在直线与上,且,与的角平分线相交于点,若以为直径作,则点与的位置关系是( )
A. 点P在⊙O外 B. 点P在⊙O内
C. 点P在⊙O上 D. 以上都有可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在∠MON的角平分线上,过点P作OP的垂线交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分别为A、B,EP∥BD,则下列结论错误的是( )
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC.点D,E分别在AB,AC边上,点F在AC边的延长线上,且BD=CE=CF.
(1)连接DE,判断DE与BC的位置关系,为什么?
(2)连接DF交BC于点G.判断DG与GF的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中BC边上的垂直平分线DE与∠BAC得平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交于点G.
求证:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.
(1)求证:△PMN是等边三角形;
(2)若AB=18cm,求CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com