【题目】在中,,于点,平分交于点,交于点,于点,连接.
(1)如图1,求证:四边形是菱形;
(2)如图2,若为的中点,过点作交于点,在不添加任何辅助线的情况下,请直接写出图2中是长倍的所有线段.
【答案】(1)证明见解析;(2)AB、BF、CF、EM.
【解析】
(1)先证明四边形AEFG是平行四边形,再证明AE=AG即可;
(2)先证明AB=AG,再分别证明AB=BF=CF=EM,CM=AG即可.
解:(1)∵AD⊥BC,GF⊥BC,
∴∠ADF=∠GFC=90°,
∴AE∥GF,
在△ABG和△FBG中, ,
∴△ABG≌△FBG,
∴AG=FG,
∵∠FBG+∠BED=90°,
∵∠BED=∠AEG,
∴∠FBG+∠AEG=90°,
∵∠ABG+∠AGE=90°,
∵∠ABG=∠FBG,
∴∠AEG=∠AGE,
∴AE=AG,
∴AE=FG,
∴四边形AEFG是平行四边形,
∵AE=AG∴四边形AEFG是菱形.
(2)∵四边形AEFG是菱形,
∴AE=AG,
∵BE=EG,∠BAG=90°,
∴AE=BE=EG,
∴△AEG是等边三角形,
∴∠AGE=60°,
在RT△ABG中,∵∠ABG=30°,
∴AB=AG,
∵∠C=30°,∴BC=2AB,
∴BE=GE,EF∥AC,EM∥BC,
∴BF=FC,CM=GM,
在RT△AEM中,∵∠AME=∠C=30°,∠GEM+∠GME=60°,
∴∠GEM=∠GME=30°,
∴EG=AG=GM=CM,
∵EM∥FC,EF∥CM,
∴四边形EFCM是平行四边形,
∴AB=BF=CF=EM=CM,
∴是CM长倍的所有线段有AB、BF、CF、EM.
科目:初中数学 来源: 题型:
【题目】某中学组织植树活动,按年级将七、八、九年级学生分成三个植树队,七年级植树x棵,八年级种的数比七年级种的数的2倍少26棵,九年级种的树比八年级种的树的一半多42棵.
(1)请用含x的式子表示三个队共种树多少棵.
(2)若这三个队共种树423棵,请你求出这三队各种了多少棵树.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, A(-1,0),B(3,0),C(0,2),CD∥x轴,CD=AB.
(1)求点D的坐标
(2)四边形OCDB的面积
(3)在y轴上是否存在一点P,使=,若存在这样一点,求出点P的坐标,若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形纸片的一角作折叠,使顶点 A 落在 A处, DE 为折痕,将 BEA对折,使得 B落在直线 EA上,得折痕 EG .
(1)求 DEG 的度数;
(2) 若 EA恰好平分 DEB ,求 DEA的度数 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查,下面是根据收集的数据绘制的两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)此次共调查了 名学生,扇形统计图中,“艺术鉴赏”所对应的圆心角的度数是 度;
(2)请把这个条形统计图补充完整;
(3)现该校700名学生报名参加这四个选修项目,请你估计有多少名学生参加了“数学思维”项目.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com