【题目】已知a、b、c在数轴上的位置如图所示,所对应的点分别为A、B、C,
(1)在数轴上表示2的点与表示5的点之间的距离为 ;
在数轴上表示﹣1的点与表示3的点之间的距离为 ;在数轴上表示﹣3的点与表示﹣5的点之间的距离为 ;由此可得点A、B之间的距离为 ,点B、C之间的距离为 ,点A、C之间的距离为 ;
(2)化简:﹣|a+b|+|c﹣b|﹣|b﹣a|;
(3)若c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣(a﹣4c﹣b)的值.
【答案】(1)3,4,2,a﹣b,b﹣c,a﹣c;(2)﹣13
【解析】
(1)根据两点间距离公式可得;
(2)结合数轴根据绝对值性质去绝对值符号,再合并即可得;
(3)根据a、b、c在数轴上的位置,结合题目条件得出c=-2,b=-1,a=2,再将其代入化简后的代数式即可
(1)5﹣2=3,3﹣(﹣1)=4,(3)﹣(﹣5)=2,A、B之间的距离为a﹣b,B、C之间的距离为b﹣c,A、C之间的距离为a﹣c,
故答案为;3,4,2,a﹣b,b﹣c,a﹣c;
(2)﹣|a+b|+|c﹣b|﹣|b﹣a|
=﹣(a+b)+(b﹣c)﹣(a﹣b)=﹣a﹣b+b﹣c﹣a+b=﹣2a+b﹣c;
(3)∵c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,
∴c=﹣2,b=﹣1,a=2,
∴﹣a+2b﹣c﹣(a﹣4c﹣b)=﹣2a+3b+3c=﹣13.
科目:初中数学 来源: 题型:
【题目】小高从家骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间x(分钟)与离家距离y(千米)的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家需要的时间是_______分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算与化简
(1)计算:(6m2+4m﹣3)+2(2m2﹣4m+1);
(2)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD相交于点O,∠BOE=90°,OF平分∠AOD,∠COE=20°.
(1)求∠BOD与∠DOF的度数.
(2)写出∠COE的所有余角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | … | |
y | … | 3 | m | … |
求m的值;
(3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说理证明.
(简单应用)
(2)如图2,分别平分,若,,求的度数(可直接使用问题(1)中的结论).
(问题探究)
(3)如图3,直线平分的外角,平分的外角,若,,猜想的度数为 .
(拓展延伸)
(4)在图4中,若设,,,试问与、之间的数量关系为: (用表示)
(5)在图5中,平分,平分的外角,猜想与、的关系,直接写出结论 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com