精英家教网 > 初中数学 > 题目详情

【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.

下面是小东的探究过程,请补充完整:

(1)函数的自变量x的取值范围是 ;

(2)下表是yx的几组对应值.

x

-3

-2

-1

1

2

3

4

5

y

3

m

m的值;

(3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)结合函数的图象,写出该函数的一条性质: .

【答案】1x≠02 3)见解析(4)见解析

【解析】

1)根据分母不为零分式有意义,可得答案;

2)根据自变量与函数值得对应关系,可得答案;

3)根据描点法画函数图象,可得答案;

4)根据图象的变化趋势,可得答案;

1x≠0

2)当时,.

3)该函数的图象如下图所示.

4)该函数的其它性质:

x<0时,yx的增大而增大;

x0时,yx的增大而减小 .

函数的图象与y轴无交点,图象由两部分组成 .(写出一条即可)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形都是由同样大小的基本图形按一定规律所组成的,其中第①个图形中共有5个基本图形,第②个图形中共有8个基本图形,第③个图形中共有11个基本图形,第④个图形中共有14个基本图形,……,按此规律排列,第⑧个图形中共有( )个基本图形

A.23B.24C.26D.29

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:

捐款(元)

 20

 50

 100

150

200

 人数(人)

 4

 12

 9

3

2

求:(Ⅰ)m=_____,n=_____

(Ⅱ)求学生捐款数目的众数、中位数和平均数;

(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:

(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;

(2)随机抽取了3名喜欢“跑步”的学生,其中有2生,1生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次空中搜寻中,水平飞行的飞机观测到在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止)为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为60°的方向上,请你计算当飞机飞临F的正上方点C时(点ABC在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,记的函数0n0)的图象为图形G, 已知图形G轴交于点,当时,函数有最小(或最大)值n, B的坐标为(, ),点AB关于原点O的对称点分别为CD,若ABCD中任何三点都不在一直线上,且对角线ACBD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.

1)如图,若函数的图象记为图形G,求图形G的伴随直线的表达式;

2)如图,若图形G的伴随直线的表达式是,且伴随四边形的面积为12,求的函数m0n 0)的表达式;

3)如图,若图形G的伴随直线是,且伴随四边形ABCD是矩形,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,是对角线上不同的两点,下列条件中,不能得出四边形一定为平行四边形的是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(12小时血液中含药量最高,达每毫升6微克.2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()

A. 0B. 1

C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店在两周内,将标价为10/斤的某种水果,经过两次降价后的价格为8.1/斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1/斤,设销售该水果第x(天)的利润为y(元),求yx(1x15)之间的函数关系式,并求出第几天时销售利润最大?

时间x(天)

1x9

9x15

x15

售价(元/斤)

1次降价后的价格

2次降价后的价格

销量(斤)

80﹣3x

120﹣x

储存和损耗费用(元)

40+3x

3x2﹣64x+400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

查看答案和解析>>

同步练习册答案