精英家教网 > 初中数学 > 题目详情

【题目】如图,一条抛物线与轴的交点为两点,其顶点在折线上运动.若的坐标分别为,点横坐标的最小值为,则点横坐标的最大值为________

【答案】2

【解析】

抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A的横坐标最大值.

由图知:当点B的横坐标为1时,抛物线顶点取C(-1,4),
设该抛物线的解析式为:y=a(x+1)2+4,
代入点B坐标,得0=a(1+1)2+4,
解得:a=-1,
即:B点横坐标取最小值时,抛物线的解析式为:y=-(x+1)2+4.
A点横坐标取最大值时,抛物线顶点应取E(3,1),
则此时抛物线的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),
即与x轴的交点为(2,0)或(4,0)(舍去),
故点A的横坐标的最大值为2.
故答案是:2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.

1)篮球和足球的单价各是多少元?

2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列因式分解的过程,再回答所提出的问题:

.

1)上述分解因式的方法是______________.

2)分解的结果应为___________.

3)分解因式:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题背景)

如图1,在四边形ADBC中,∠ACB=ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.

小吴同学探究此问题的思路是:将BCD绕点D,逆时针旋转90°AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC=CD

(简单应用)

(1)在图1中,若AC=3, CD=,则AB=

(2)如图3,AB是⊙O的直径,点C、D在⊙O上,∠C=45°,若AB=13,BC=12,求CD的长.

(拓展规律)

(3)如图4,ACB=ADB=90°,AD=BD,若AC=m,CD=n,则BC的长为 .(用含m,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角形三边长为abc,则以下列线段为边长的三角形是直角三角形的是(

A.a+2,b+2,c+2B.3a,4b,5cC.a+3,b+4,c+5D.2a,2b,2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的图象与轴正半轴交于点.

求证:该二次函数的图象与轴必有两个交点;

设该二次函数的图象与轴的两个交点中右侧的交点为点,若,将直线向下平移个单位得到直线,求直线的解析式;

的条件下,设为二次函数图象上的一个动点,当时,点关于轴的对称点都在直线的下方,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一玩具厂去年生产某种玩具,成本为/件,出厂价为/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).

用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.

求今年这种玩具的每件利润元与之间的函数关系式.

设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线Lx轴、y轴分别交于AB两点,在y轴上有一点C04,线段OA上的动点M(与OA不重合)从A点以每秒1个单位的速度沿x轴向左移动。

1)求AB两点的坐标;

2)求△COM的面积SM的移动时间t之间的函数关系式,并写出t的取值范围;

3)当t何值时△COM≌△AOB,并求此时M点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADBC,∠BAD90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连结BE,过C点作CFBE,垂足为F

1)线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.

结论:BF   

2)若AB6AE8,求点A到点C的距离.

查看答案和解析>>

同步练习册答案