【题目】如图,在边长均为1的正方形ABCD和ABEF中,顶点A,B在双曲线y1= (k1≠0)上,顶点E,F在双曲线y2= (k2≠0)上,顶点C,D分别在x轴和y轴上,则k1= , k2= .
【答案】1;3
【解析】解:
作AM⊥OD于M,BN⊥OC于N,EH存在OC于H,
∴∠MAD+∠ADM=90°,
∵∠ODC+∠ADM=90°,
∴∠ODC=∠MAD,
在△AMD和△DOC中,
,
∴△AMD≌△DOC,
同理△CNB≌△DOC,
设OD=x,OC=y,
则AM=CN=OD=x,MD=BN=OC=y,
∵点A,B在双曲线y1= 上,
∴x(x+y)=y(x+y),
解得,x=y,
∵DC=1,
∴x=y= ,
∴k1= ×( + )=1,
∵BN∥EH,CB=BE,
∴CN=NH= ,
∴k2=( + )×( + + )=3,
所以答案是:1;3.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】探究题
(1)问题发现:
如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC,请判断:FG与CE的数量关系是 , 位置关系是 .
(2)拓展探究:
如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;
(3)类比延伸:
如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2 , 连接AM,利用S△ABC=S△ABM+S△ACM , 可以得出结论:h=h1+h2 .
类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.
拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y= x+3,l2:y=﹣3x+3,
若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线L:y=ax2+2(a﹣1)x﹣4(常数a>0)经过点A(﹣2,0)和点B(0,﹣4),与x轴的正半轴交于点E,过点B作BC⊥y轴,交L于点C,以OB,BC为边作矩形OBCD.
(1)当x=2时,L取得最低点,求L的解析式.
(2)用含a的代数式分别表示点C和点E的坐标;
(3)当S矩形OBCD=4时,求a的值.
(4)如图2,作射线AB,OC,当AB∥OC时,将矩形OBCD从点O沿射线OC方向平移,平移后对应的矩形记作O′B′C′D′,直接写出点A到直线BD′的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.
(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.
(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com