精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2 , 连接AM,利用SABC=SABM+SACM , 可以得出结论:h=h1+h2
类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.
拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y= x+3,l2:y=﹣3x+3,
若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.

【答案】解:类比探究:
结论:h=h1﹣h2
理由:
∵SABC= ACBD= ACh,
SABM= ABME= ABh1
SACM= ACMF= ACh2 , .
又∵SABC=SABM﹣SACM
ACh= ABh1 ACh2
∵AB=AC,
∴h=h1﹣h2
拓展应用:在y= x+3中,令x=0得y=3;令y=0得x=﹣4,
则:A(﹣4,0),B(0,3),同理求得C(1,0),
OA=4,OB=3,AC=5,
AB= =5,
所以AB=AC,
即△ABC为等腰三角形.
设点M的坐标为(x,y),
①当点M在BC边上时,由h1+h2=h得:
OB=1+y,y=3﹣1=2,把它代入y=﹣3x+3中求得:x=
∴M( ,2);
②当点M在CB延长线上时,由h1﹣h2=h得:
OB=y﹣1,y=3+1=4,把它代入y=﹣3x+3中求得:x=﹣
∴M(﹣ ,4).
综上所述点M的坐标为( ,2)或(﹣ ,4).
【解析】类比探究:结论:h=h1﹣h2 . 连接OA.利用三角形面积公式根据SABC=SABM﹣SACM , 代入化简即可解决问题.
拓展应用:首先证明AB=AC,分两种情形利用(1)中结论,列出方程即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.

(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2 ,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.
(1)求证:DE=CF;
(2)若AB=4,AD=6,∠B=60°,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论: ①∠AGD=112.5°;②tan∠AED= +1;③四边形AEFG是菱形;④SACD= SOCD
其中正确结论的序号是 . (把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校团委要组织班级歌咏比赛,为了确定一首喜欢人数最多的歌曲作为每班必唱歌曲,团委提供了代号为A,B,C,D四首备选曲目让学生选择(每个学生只选课一首),经过抽样调查后,将采集的数据绘制如下两幅不完整的统计图,请根据图1,图2所提供的信息,解答下列问题:
(1)在抽样调查中,求选择曲目代号为A的学生人数占抽样总人数的百分比;
(2)请将图2补充完整;
(3)若该校共有1530名学生,根据抽样调查的结果,估计全校选择曲目代号为D的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1的正方形ABCD和ABEF中,顶点A,B在双曲线y1= (k1≠0)上,顶点E,F在双曲线y2= (k2≠0)上,顶点C,D分别在x轴和y轴上,则k1= , k2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为
(1)求乙盒中红球的个数;
(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.

查看答案和解析>>

同步练习册答案