【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论: ①∠AGD=112.5°;②tan∠AED= +1;③四边形AEFG是菱形;④S△ACD= S△OCD .
其中正确结论的序号是 . (把所有正确结论的序号都填在横线上)
【答案】①②③
【解析】解:∵四边形ABCD是正方形, ∴∠ADB=45°,
由折叠的性质可知,∠ADE=∠BDE=22.5°,
∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;
设AE=x,
∵△BEF是等腰直角三角形,
∴BE= EF= AE= x,
∴x+ x=1,
解得,x= ﹣1,
∴tan∠AED= = +1,②正确;
由同位角相等可知,GF∥AB,EF∥AC,
∴四边形AEFG是平行四边形,
由折叠的性质可知,EA=EF,
∴四边形AEFG是菱形,③正确;
由正方形的性质可知,S△ACD=2S△OCD , ④错误,
所以答案是:①②③.
【考点精析】根据题目的已知条件,利用菱形的性质和翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是( )
A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2 , 连接AM,利用S△ABC=S△ABM+S△ACM , 可以得出结论:h=h1+h2 .
类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.
拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y= x+3,l2:y=﹣3x+3,
若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了相应“足球进校园”的号召,某体育用品商店计划购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的 .
(1)求m的值;
(2)若这两次购进的A,B两种品牌的足球分别按照a元/个, a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线L:y=ax2+2(a﹣1)x﹣4(常数a>0)经过点A(﹣2,0)和点B(0,﹣4),与x轴的正半轴交于点E,过点B作BC⊥y轴,交L于点C,以OB,BC为边作矩形OBCD.
(1)当x=2时,L取得最低点,求L的解析式.
(2)用含a的代数式分别表示点C和点E的坐标;
(3)当S矩形OBCD=4时,求a的值.
(4)如图2,作射线AB,OC,当AB∥OC时,将矩形OBCD从点O沿射线OC方向平移,平移后对应的矩形记作O′B′C′D′,直接写出点A到直线BD′的最大距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com