【题目】如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;
(3)直接写出不等式﹣x+3<的解集.
【答案】(1)y=;(2)P的坐标为(﹣2,0)或(8,0);(3)0<x<1或x>2.
【解析】
(1)利用点A在y=﹣x+3上求a,进而代入反比例函数y=(k≠0)求k即可;
(2)设P(x,0),求得C点的坐标,则PC=|3﹣x|,然后根据三角形面积公式列出方程,解方程即可;
(3)解析式联立求得B点的坐标,即可根据图象求得不等式﹣x+3<的解集.
解:(1)把点A(1,a)代入y=﹣x+3,得a=2,
∴A(1,2)
把A(1,2)代入反比例函数y=,
∴k=1×2=2;
∴反比例函数的表达式为y=
(2)∵一次函数y=﹣x+3的图象与x轴交于点C,
∴C(3,0),
设P(x,0),
∴PC=|3﹣x|,
∴S△APC=|3﹣x|×2=5,
∴x=﹣2或x=8,
∴P的坐标为(﹣2,0)或(8,0);
(3)解,
解得:或,
∴B(2,1),
由图象可知:不等式﹣x+3<的解集是:0<x<1或x>2.
科目:初中数学 来源: 题型:
【题目】如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4正方形ABCD中,以AB为腰向正方形内部作等腰△ABE,点G在CD上,且CG=3DG.连接BG并延长,与AE交于点F,与AD延长线交于点H.连接DE交BH于点K.若AE2=BFBH,则S△CDE=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )
A. 1一定不是关于x的方程x2+bx+a=0的根
B. 0一定不是关于x的方程x2+bx+a=0的根
C. 1和﹣1都是关于x的方程x2+bx+a=0的根
D. 1和﹣1不都是关于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元,为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?这时售出台灯多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的是某地区今年4月份的囗平均气温的频数分布直方图(直方图中每一组数都包括前一个边界值,不包括后一个边界值),则下列结论中错误的是( )
A.该地区4月份的口平均气温在18℃以上(含18℃)的共有10天
B.该直方图的组距是4℃
C.该地区4月份的口平均气温的最大值至少是22℃
D.该直方图中口平均气温为6~10℃的这一组数的频数为3,频率为0.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(2,3),抛物线G:y=x2-2x+c(c为常数)的顶点坐标为M,其对称轴与x轴相交于点N.
(1)若抛物线G经过点A,求出其解析式,并写出点M的坐标.
(2)若点B(x1,y1)和点C(x1+3,y2)在抛物线G上,试比较y1,y2的大小.
(3)连接OM,若45°≤∠MON≤60°,请直接写出c的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.
(1)计算:,;
(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;
(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有 人;在扇形统计图中,B所对应的扇形的圆心角的度数是 ;
(2)将条形统计图补充完整;
(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com