精英家教网 > 初中数学 > 题目详情

【题目】在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有(
A.1个
B.2个
C.3个
D.4个

【答案】D
【解析】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°, ∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,∴①正确;
②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,
∴∠C= ×180°=90°,
∴△ABC是直角三角形,∴②正确;
③∵∠A=90°﹣∠B,
∴∠A+∠B=90°,
∵∠A+∠B+∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,∴③正确;
④∵∠A=∠B= ∠C,
∴∠C=2∠A=2∠B,
∵∠A+∠B+∠C=180°,
∴∠A+∠A+2∠A=180°,
∴∠A=45°,
∴∠C=90°,
∴△ABC是直角三角形,∴④正确;
故选D.
根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以正方形ABCD的一边向形外作等边△ABE,BD与EC交于点F,则∠AFD等于( )

A.60°
B.50°
C.45°
D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.

求证:
(1)BC=AD
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6,则BC的长为(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.

(1)求证:△ABE≌△CDF;

(2)若AB=DB,求证:四边形DFBE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(  )

A.3a+2a=5a2
B.a2a3=a6
C.(a+b)(a﹣b)=a2﹣b2
D.(a+b)2=a2+b2

查看答案和解析>>

同步练习册答案