精英家教网 > 初中数学 > 题目详情

【题目】(本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式 ,已知点O与球网的水平距离为5m,球网的高度1.55m.

(1)当a= 时,①求h的值.②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.

【答案】
(1)

解:①∵a= ,P(0,1);

∴1= +h;

∴h= ;

②把x=5代入y= 得:

y==1.625;

∵1.625>1.55;

∴此球能过网.


(2)

解:把(0,1),(7, )代入y=a得:;

;解得:;

∴a=.


【解析】(1)①利用a=,将点(0,1)代入解析式即可求出h的值;②利用x=5代入解析式求出y,再与1.55比较大小即可判断是否过网;
(2)将点(0,1),(7,)代入解析式得到一个二元一次方程组求解即可得出a的值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程解应用题

四川的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点。从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元。设从B地运往C处的蔬菜为吨。

(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时的值?

C

D

总计

A

200

B

300

总计

240

260

500

(2)已知总运费最小的调运费用是9280元,请你提交具体的调运方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 的值;
(2)设这批淡水鱼放养 天后的质量为 ),销售单价为 元/ .根据以往经验可知: 的函数关系为 的函数关系如图所示.

①分别求出当 时, 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润=销售总额-总成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,抛物线 轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足 ,则称点P为抛物线 的勾股点。

(1)直接写出抛物线 的勾股点的坐标;
(2)如图2,已知抛物线C: 轴交于A,B两点,点P(1, )是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件 的点Q(异于点P)的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为-103P为数轴上任意一点其对应的数为x

1MN的长为

2如果点P到点MN的距离相等那么x的值是

3数轴上是否存在点P使点P到点MN的距离之和是8若存在直接写出x的值若不存在请说明理由

4如果点P以每分钟1个单位长度的速度从点O向左运动同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点MN的距离相等t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线相交于点于点于点F,连结,则下列结论:图中共有四对全等三角形其中正确结论的个数是

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.

(1)请写出与A,B两点距离相等的M点对应的数; 

(2)现在有一只电子蚂蚁PB点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数是多少.

(3)若当电子蚂蚁PB点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,求经过多长的时间两只电子蚂蚁在数轴上相距35个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF分别是□ABCD的边BCAD上的点,且BEDF

1)求证:四边形AECF是平行四边形;

2)若BC10∠BAC90°,且四边形AECF是菱形,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EFBD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为(  )

A. 35° B. 55° C. 65° D. 75°

查看答案和解析>>

同步练习册答案