精英家教网 > 初中数学 > 题目详情

【题目】在平行四边形ABCD中,P为对角线BD上任意一点,连接PA、PC,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4 , 给出如下结论:①S1=S2;②S1+S2=S3;③S1+S3=S2+S4;④若S1S3=S2S4 , 其中正确结论的序号是 . (在横线上填上你认为所有正确答案的序号)

【答案】③
【解析】解:∵四边形ABCD是平行四边形,

∴AB=CD,AD=BC,

设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4

则S1= ABh1,S2= BCh2,S3= CDh3,S4= ADh4

ABh1+ CDh3= ABhAB

BCh2+ ADh4= BChBC

又∵S平行四边形ABCD=ABhAB=BChBC

∴S2+S4=S1+S3

故③正确;①②④不正确;

所以答案是:③.

【考点精析】关于本题考查的平行四边形的性质,需要了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】①如图,四边形ABCD中,对角线相交于点OEFGH分别是ADBDBCAC的中点.

1)求证:四边形EFGH是平行四边形;

2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;

②如图,在RtABC中,∠ACB90°ACBCDBC中点,CEADEBFAC,交CE的延长线与点F.求证:AB垂直平分DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为12,△ABC是等边三角形,E在正方形ABCD,对角线AC上有一点P使PE+PD的和最小,这个最小值为( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.

(1)求证:BE=CF.

(2)当四边形ACDE为菱形时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD中,∠MAN=45°∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MN.当∠MAN绕点A旋转到BM=DN(如图1),易证BM+DN=MN

(1)∠MAN绕点A旋转到BM≠DN(如图2),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明.

(2)∠MAN绕点A旋转到如图3的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某段公路经测算发现,匀速行驶的车辆通过该段公路时,所需时间t(h)与行驶速度v(km/h)满足反比例函数关系,其图象为如图所示的一段曲线.且端点为A(40,1)和B(m,0.5).

(1)求t与v的函数关系式及m的值;
(2)若该段公路限速50km/h,求通过该路段需要的最短时间和这段公路的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(三角形顶点是网格线的交点)和△A1B1C1 , △ABC与△A1B1C1成中心对称.

(1)画出△ABC和△A1B1C1的对称中心O;
(2)将△A1B1C1 , 沿直线ED方向向上平移6格,画出△A2B2C2
(3)将△A2B2C2绕点C2顺时针方向旋转90°,画出△A3B3C3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.

(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?

(2)他到达离家最远的地方是什么时间?离家多远?

(3)10时到12时他行驶了多少千米?

(4)他可能在哪段时间内休息,并吃午餐?

(5)他由离家最远的地方返回时的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4

(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)

查看答案和解析>>

同步练习册答案