【题目】如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.
(1)求这个二次函数的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.
(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.
【答案】(1)y=-x2+2x+3;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为( , )且△ACD面积的最大值 ;(3)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形
点E的坐标是(1,4)或(-2,-5).
【解析】
(1)因为点A(3,0),点C(0,3)在抛物线y=x2+bx+c上,可代入确定b、c的值;
(2)过点D作DH⊥x轴,设D(t,-t2+2t+3),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;
(3)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x3,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+3,再与二次函数的解析式联立方程组求解即可.
(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(3,0)与y轴交于点C(0,3)
∴
解之得
∴这个二次函数的解析式为y=-x2+2x+3
(2)解:如图,设D(t,-t2+2t+3),过点D作DH⊥x轴,垂足为H,
则S△ACD=S梯形OCDH+S△AHD-S△AOC
= (-t2+2t+3+3)+ (3-t)(-t2+2t+3)- ×3×3
=
=
∵ <0
∴当t= 时,△ACD的面积有最大值
此时-t2+2t+3=
∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为( , )且△ACD面积的最大值
(3)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形
点E的坐标是(1,4)或(-2,-5).
理由如下:有两种情况:
①如图,
过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.
∵CO=AO=3,
∴∠CAO=45°,
∴∠FAO=45°,AO=OF=3.
∴点F的坐标为(0,3).
设直线AE的解析式为y=kx+b,
将(0,3),(3,0)代入y=kx+b得:
解得
∴直线AE的解析式为y=x3,
由
解得或
∴点E1的坐标为(2,5).
②如图,
过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2 .
∵∠CAO=45°,
∴∠CMA=45°,OM=OC=3.
∴点M的坐标为(3,0),
设直线CM的解析式为y=kx+b,
将(0,3),(-3,0)代入y=kx+b得:
解得
∴直线CM的解析式为y=x+3.
由
解得:或
∴点E2的坐标为(1,4).
综上,在抛物线上存在点E1(2,5)、E2(1,4),使△ACE1、△ACE2是以AC为直角边的直角三角形.
科目:初中数学 来源: 题型:
【题目】已知:和均为等腰直角三角形,,,,连接.
(1)如图1所示,线段与的数量关系是_____,位置关系是_____;
(2)在图1中,若点M、P、N分别为的中点,连接,请判断的形状,并说明理由;
(3)如图2所示,若M、N、P分别为上的点,且满足,,连接,则线段长度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;
(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.已知:在矩形中,是对角线,于点,于点;
(1)如图1,求证:;
(2)如图2,当时,连接.,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.
(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____;
(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;
(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,当AD=25,且AE<DE时,求的值;
(3)如图3,当BEEF=108时,求BP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张相同的卡片,上面分别写有数字1、2、3、5,将卡片洗匀后背面朝上.
(1)从中任意抽取1张,抽得的卡片上数字为奇数的概率是_______;
(2)从中任意抽取1张,把上面的数字作为十位数,记录后不放回,再任意抽取1张把上面的数字作为个位数,求组成的两位数是3的倍数的概率.(用树状图或列表的方法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com