精英家教网 > 初中数学 > 题目详情

2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h若高铁列车的平均速度是特快列车平均速度的25倍,求特快列车的平均速度

 

91km/h

【解析】

试题分析:方程的应用解题关键是设出未知数,找出关键描述语,确定等量关系,列出方程求解本题设特快列车的平均速度为xkm/h,则高铁列车的平均速度为25xkm/h,关键描述语是:高铁列车的运行时间比特快列车所用的时间减少了16h,等量关系为:乘特快列车的行程1800km的时间=高铁列车的行驶860km的时间+16小时

试题解析:【解析】
设特快列车的平均速度为xkm/h,

由题意得:

解得:x=91,

经检验:x=91是分式方程的解

答:特快列车的平均速度为91km/h

考点:分式方程的应用(行程问题)

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(辽宁阜新卷)数学(解析版) 题型:填空题

如图,是⊙O的内接三角形,如果,那么_______度

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州黔西卷)数学(解析版) 题型:解答题

如图,点B、C、D都在O上,过C点作CABD交OD的延长线于点A,连接BC,B=A=30°,BD=

(1)求证:AC是O的切线;

(2)求由线段AC、AD与弧CD所围成的阴影部分的面积(结果保留π)

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州黔西卷)数学(解析版) 题型:选择题

已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为( )

A外离 B内含 C相交 D外切

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:解答题

如图,将一副直角三角形拼放在一起得到四边形ABCD,其中BAC=45°,ACD=30°,点E为CD边上的中点,连接AE,将ADE沿AE所在直线翻折得到AD′E,D′E交AC于F点若AB=6cm

(1)AE的长为 cm;

(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;

(3)求点D′到BC的距离

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:填空题

若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是 (写出一个k的值)

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:选择题

如图,在方格纸中,ABC和EPD的顶点均在格点上,要使ABC∽△EPD,则点P所在的格点为( )

AP1 BP2 CP3 DP4

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州六盘水卷)数学(解析版) 题型:填空题

如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=k2x+b(k2≠0)的图象交于A,B两点,观察图象,当y1>y2时,x的取值范围是   

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(福建南平卷)数学(解析版) 题型:解答题

在图1、图2、图3、图4中,点P在线段BC上移动(不与BC重合),MBC的延长线上.

1)如图1,△ABC和APE均为正三角形,连接CE.

求证:ABP≌△ACE.

②∠ECM的度数为   °.

(2)如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则ECM的度数为   °.

如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则ECM的度数为   °.

(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想ECM的度数与正多边形边数n的数量关系(用含n的式子表示ECM的度数),并利用图4(放大后的局部图形)证明你的结论.

 

 

查看答案和解析>>

同步练习册答案