在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.
(1)如图1,△ABC和△APE均为正三角形,连接CE.
①求证:△ABP≌△ACE.
②∠ECM的度数为 °.
(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 °.
②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 °.
(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.
![]()
(1)60;(2)45,36.(3)
.
【解析】
试题分析:(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.
②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.
(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.
②作EN⊥BN,交BM于点N,由△ABP≌△ACE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.
(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.[来
试题解析:(1)①证明:如图1,
![]()
∵△ABC与△APE均为正三角形,
∴AB=AC,AP=AE,∠BAC=∠PAE=60°,
∴∠BAC-∠PAC=∠PAE-∠PAC
即∠BAP=∠CAE,
在△ABP和△ACE中,
,
∴△ABP≌△ACE (SAS).
②∵△ABP≌△ACE,
∴∠ACE=∠B=60°,
∵∠ACB=60°,
∠ECM=180°-60°-60°=60°.
(2)①如图2,作EN⊥BN,交BM于点N
![]()
∵四边形ABCD和APEF均为正方形,
∴AP=PE,∠B=∠ENP=90°,
∴∠BAP+∠APB=∠EPM+∠APB=90°,
即∠BAP=∠NPE,
在△ABP和△PNE中,
,
∴△ABP≌△ACE (AAS).
∴AB=PN,BP=EN,
∵BP+PC=PC+CN=AB,
∴BP=CN,
∴CN=EN,
∴∠ECM=∠CEN=45°
②如图3,作EN∥CD交BM于点N,
![]()
∵五边形ABCDF和APEGH均为正五边方形,
∴AP=PE,∠B=∠BCD,
∵EN∥CD,
∴∠PNE=∠BCD,
∴∠B=∠PNE
∵∠BAP+∠APB=∠EPM+∠APB=180°-∠B,
即∠BAP=∠NPE,
在△ABP和△PNE中,
,
∴△ABP≌△ACE (AAS).
∴AB=PN,BP=EN,
∵BP+PC=PC+CN=
AB,
∴BP
=CN,
∴CN=EN,
∴∠NCE=∠NEC,
∵∠CNE=∠BCD=108°,
∴∠ECM=∠CEN=
(180°-∠CNE)=
×(180°-108°)=36°.
(3)如图4中,过E作EK∥CD,交BM于点K,
![]()
∵n边形ABC…和n边形APE…为正n边形,
∴AB=BC AP=PE
∠ABC=∠BCD=∠APE=![]()
∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK
∴∠BAP=∠KPE
∵EK∥CD,
∴∠BCD=∠PKE
∴∠ABP=∠PKE,
在△ABP和△PKE中,
,
∴△ABP≌△PKE(AAS)
∴BP=EK,AB=PK,
∴BC=PK,
∴BC-PC=PK-PC,
∴BP=CK,
∴CK=KE,
∴∠KCE=∠KEC,
∵∠CKE=∠BCD=![]()
∴∠ECK=
.
考点:四边形综合题.
科目:初中数学 来源:2014年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:解答题
2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(福建莆田卷)数学(解析版) 题型:填空题
在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(福建三明卷)数学(解析版) 题型:解答题
为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.
(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;
(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃天水卷)数学(解析版) 题型:选择题
已知函数y=
的图象如图,以下结论:
①m<0;
②在每个分支上y随x的增大而增大;
③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;
④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.
其中正确的个数是( )
![]()
A.4个 B.3个 C.2个 D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com