【题目】如图,梯形ABCD中,AD∥BC,BA=AD=DC,点E在CB延长线上,BE=AD,连接AC、AE.
⑴ 求证:AE=AC;
⑵ 若AB⊥AC, F是BC的中点,试判断四边形AFCD的形状,并说明理由.
【答案】(1)见解析;(2)四边形AFCD是菱形,理由见解析
【解析】
(1)首先连接BD,根据等腰梯形的性质,可得AC=BD,易得四边形AEBD是平行四边形,由平行四边形的对边相等,即可得AE=BD,继而证得结论;
(2)由AB⊥AC,F是BC的中点,根据等腰梯形的性质,易求得∠ACB=30°,继而可证得AF=FC=CD=AD,则可判定四边形AFCD是菱形.
(1)连接BD
∵梯形ABCD是等腰梯形
∴AC=BD
∵BE=AD, AD∥BC
∴四边形AEBD是平行四边形
∴AE=BD,
∴AE=AC
(2)四边形AFCD是菱形, 理由是:
∵AB⊥AC, F是BC的中点
∴AF=CF,
∴∠FAC=∠FCA
∵AD=DC,
∴∠DAC=∠DCA
∵AD∥BC,
∴∠DAC=∠FCA
∴∠DCA=∠FAC
∴AF∥DC
∵AD∥BC,AF∥DC
∴四边形AFCD是平行四边形
又AD=DC
∴四边形AFCD是菱形
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.
(1)求证:△DAF≌△DCE.
(2)求证:DE是⊙O的切线.
(3)若BF=2,DH=,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正整数按如图所示的规律排列下去,若有序数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示8,已知1+2+3+…+n=,则表示2020的有序数对是( ).
A.(64,4)B.(65,4)C.(64,61)D.(65,61)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称或中心对称变换,若原来点 A 坐标是(a,b),则经过第 2012 次变换后所得的 A 点坐标是( )
A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线与y轴交于点D(0,3).
(1)直接写出c的值;
(2)若抛物线与x轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;
(3)已知点P是直线BC上一个动点,
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥y轴,垂足为E,连结BE.设点P的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为r的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求r的值,并直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com