【题目】某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m=_______,n=_______;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
(4)分别用A、B、C、D表示“书法”、“摄影”、“航模”、“围棋”,小明和小红从中各选取一个小组,请用树状图法或列表法求出“两人选择小组不同”的概率.
【答案】(1)参加这次问卷调查的学生人数150人,图形见解析;(2)36、16;(3)该校选择“围棋”课外兴趣小组的学生有192人;(4)
【解析】
(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;
(2)根据百分比的概念可得m、n的值;
(3)总人数乘以样本中围棋的人数所占百分比;
(4)根据题意画出树状图得出所有等情况数和“两人选择小组不同”的情况数,再根据概率公式即可得出答案.
解:(1)参加这次问卷调查的学生人数为:30÷20%=150(人),
航模的人数为150(30+54+24)=42(人),
补全图形如下:
(2)m%=,n%=,
即m=36,n=16,
故答案为:36、16;
(3)该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人);
(4)根据题意画图如下:
共有16种等情况数,其中“两人选择小组不同”的有12种,
则“两人选择小组不同”的概率是.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),有下列说法:①bc<0;②a+b+c>0;③2a+b=0;④4ac>b2.其中错误的是( )
A.②④B.①③④C.①②④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴和轴分别交于点和点抛物线经过点与直线的另一个交点为.
求的值和抛物线的解析式
点在抛物线上,轴交直线于点点在直线上,且四边形为矩形.设点的横坐标为矩形的周长为求与的函数关系式以及的最大值
将绕平面内某点逆时针旋转得到(点分别与点对应),若的两个顶点恰好落在抛物线上,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:
①∠BAE=30°;
②射线FE是∠AFC的角平分线;
③CF=CD;
④AF=AB+CF.
其中正确结论的个数为( )
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物的顶部有一块标识牌 CD,小明在斜坡上 B 处测得标识牌顶部C 的仰角为 45°, 沿斜坡走下来在地面 A 处测得标识牌底部 D 的仰角为 60°,已知斜坡 AB 的坡角为 30°,AB=AE=10 米.则标识牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物的顶部有一块标识牌 CD,小明在斜坡上 B 处测得标识牌顶部C 的仰角为 45°, 沿斜坡走下来在地面 A 处测得标识牌底部 D 的仰角为 60°,已知斜坡 AB 的坡角为 30°,AB=AE=10 米.则标识牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如图1,A、D、C在同一直线上时,=_______,=_______;
(2)在图1的基础上,固定△ABC,将△CDE绕C旋转一定的角度α(0°<α<360°),如图2,连接AD、BE.
① 的值有没有改变?请说明理由.
②拓展研究:若AB=1,DE=,当 B、D、E在同一直线上时,请计算线段AD的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线的顶点坐标为(0,1)且经过点A(1,2),直线y=3x﹣4经过点B(,n),与y轴交点为C.
(1)求抛物线的解析式及n的值;
(2)将直线BC绕原点O逆时针旋转45°,求旋转后的直线的解析式;
(3)如图2将抛物线绕原点O顺时针旋转45°得到新曲线,新曲线与直线BC交于点M、N,点M在点N的上方,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com