【题目】如图,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的长.
【答案】12cm
【解析】试题分析:首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,即可求得BC的长.
试题解析:连接AD,
∵DE垂直平分AC,
∴AD=CD,∠DEC=90°,
∴∠DAC=∠C,
∵在△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C= =30°,
∴∠DAC=∠C=∠B=30°,
∴∠ADB=∠DAC+∠C=60°,
∴∠BAD=180°-∠B-∠ADB=90°,
在Rt△CDE中,∠C=30°,DE=2cm,
∴CD=2DE=4cm,
∴AD=CD=4cm,
在Rt△BAD中,∠B=30°,
∴BD=2AD=8cm,
∴BC=BD+CD=12(cm).
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )
A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作已知三角形的高”的尺规作图过程.
已知: .
求作: 边上的高
作法:如图,
(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于, 两点;
(2)作直线,交于点;
(3)以为圆心, 为半径⊙O,与CB的延长线交于点D,连接AD,线段AD即为所作的高.
请回答;该尺规作图的依据是___________________________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为( )
A. 40° B. 41° C. 32° D. 36°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)试说明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:
(1)请问采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图, 是内一点, , , , 分别是垂足,且.
()求证:点在的平分线上.
()若点是射线上一点,点是射线上一点,且, .
①当是等腰三角形时,求点到射线的距离;
②连接, , ,当的周长最小时,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com