精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,OAOBABx轴于点C,点A1)在反比例函数的图象上.

1)求反比例函数的表达式;

2)在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;

3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

【答案】1;(2P0);(3E﹣1),在.

【解析】试题分析:(1)将点A1)代入,利用待定系数法即可求出反比例函数的表达式;

2)先由射影定理求出BC=3,那么B﹣3),计算求出SAOB=××4=.则SAOP=SAOB=.设点P的坐标为(m0),列出方程求解即可;

3)先解OAB,得出ABO=30°,再根据旋转的性质求出E点坐标为(﹣1),即可求解.

试题解析:(1A1)在反比例函数的图象上,k=×1=反比例函数的表达式为

2A1),ABx轴于点COC=AC=1,由射影定理得=ACBC,可得BC=3B﹣3),SAOB=××4=SAOP=SAOB=

设点P的坐标为(m0),×|m|×1=|m|=Px轴的负半轴上的点,m=﹣P的坐标为(0);

3)点E在该反比例函数的图象上,理由如下:

OAOBOA=2OB=AB=4sinABO===∴∠ABO=30°BOA绕点B按逆时针方向旋转60°得到BDE∴△BOA≌△BDEOBD=60°BO=BD=OA=DE=2BOA=BDE=90°ABD=30°+60°=90°,而BD﹣OC=BC﹣DE=1E﹣1),×﹣1=E在该反比例函数的图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于x的方程有两个不相等的实数根.

(1)求m的取值范围;

(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtAOB的顶点O在坐标原点,点Bx轴上,∠ABO=90°,反比例函数y=x>0)的图象经过OA的中点C,交AB于点D,点C的坐标为(1)

1)求反比例函数的表达式;

2)连接CD,求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以边AB为直径的O交边BC于点D,交边AC于点E.过D点作DFAC于点F

1)求证:DFO的切线;

2)求证:CFEF

3)延长FD交边AB的延长线于点G,若EF3BG9时,求O的半径及CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知顶点为D的抛物线x轴交于A(10)C(30)两点,与y轴交于B点.

(1)求该抛物线的解析式及点D坐标;

(2)若点Q是该抛物线的对称轴上的一个动点,当AQQB最小时,直接写出直线AQ的函数解析式;

(3)若点P为抛物上的一个动点,且点Px轴上方,过PPK垂直x轴于点K,是否存在点P使得A,K,P三点形成的三角形与DBC相似?如存在,求出点P的坐标,如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△DEF,点EBC边上,点ADE边上,边EF和边AC相交于点G.如果AE=EC,AEG=B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.

(1)当CM:CB=1:4时,求CF的长.

(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.

(3)当△ABM∽△EFN时,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接暑假旅游高峰的到来,某旅游纪念品商店决定购进AB两种纪念品.若购进A种纪念品7件,B种纪念品4件,需要760元;若购进A种纪念品5件.B种纪念品8件,需要800元.

1)求购进AB两种纪念品每件各需多少元?

2)若该商店决定购进这两种纪念品共100件.考虑市场需求和资金周转,这100件纪念品的资金不少于7000元,但不超过7200元,那么该商店共有几种进货方案?

3)若销售A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,用(2)中的进货方案,哪一种方案可获利最大?最大利润是多少元?

查看答案和解析>>

同步练习册答案