【题目】如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC于点F.
(1)求证:DF是⊙O的切线;
(2)求证:CF=EF;
(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.
【答案】(1)见解析;(2)见解析;(3)⊙O的半径是,CD=3.
【解析】
(1)首先连接OD,通过等量互换,得出OD∥AC,进而得出DF⊥OD,即可得证;
(2)首先根据圆内接四边形的性质得出∠CED=∠ABC,进而得出∠CED=∠C,CD=DE,然后根据等腰三角形的性质即可得出CF=EF;
(3)首先根据圆和等腰三角形的性质得出CD=BD,然后根据平行判定△GOD∽△GAF,利用相似成比例构建方程即可得出⊙O的半径,利用△CED∽△CBA,即可得出CD.
(1)证明:如图1,连接OD,
∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠ABC=∠ODB,
∴∠C=∠ODB,
∴OD∥AC,
∵DF⊥AC,
∴DF⊥OD,
∴DF是⊙O的切线;
(2)证明:如图2,连接DE,
∵四边形AEDB为圆内接四边形,
∴∠CED=∠ABC,
∵∠ABC=∠C,
∴∠CED=∠C,
∴CD=DE,
∵DF⊥CE,
∴CF=EF;
(3)解:如图3,连接AD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴CD=BD,
∵OD∥AC,
∴△GOD∽△GAF,
∴,
∴设⊙O的半径是r,则AB=AC=2r,
∴AF=2r﹣3,OG=9+r,AG=9+2r,
∴,
∴r=,
即⊙O的半径是.
∴AC=AB=9,
∵∠CED=∠ABC,∠ECD=∠ACB,
∴△CED∽△CBA,
∴,
∴,
∴CD=3.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:
①△CMP是直角三角形;
②点C、E、G不在同一条直线上;
③PC=MP;
④BP=AB;
⑤PG=2EF.
其中一定成立的是_____(把所有正确结论的序号填在横线上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,点E,点F分别是边BC,边CD上的动点,且BE=CF,AE与BF相交于点P.若点M为边BC的中点,点N为边CD上任意一点,则MN+PN的最小值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,与反比例函数的图象在第一象限交于点,连接,且.则不等式的解集为( )
A.或B.或C.或D.-3<x<0或x>3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD,过点B有一条直线1与正方形ABCD的对角线AC所在直线相交于点G,过点C、A分别作直线1的垂线段CE、AF于点E、F,对角线AC、BD相交于点O,连接OE、OF.
(1)如图1,猜测OE、OF有怎样的数量关系和位置关系,并说明理由;
(2)若正方形边长为10.
①若直线1在如图1的位置,当时,求EG的长;
②若直线1在如图2的位置,当时,请直接写出EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了了解本校学生的预防新型冠状病毒知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果按了解程度分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调査结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题:
(1)本次调查的学生共有多少人?
(2)估计该校2000名学生中“了解”的人数约有多少人?
(3)若“不了解”的4人中有甲、乙两名男生,丙、丁两名女生,从这4人中随机抽取两人去重新参加预防新冠病毒如识培训,请用画树状图或列表的方法,求恰好抽到2名男生的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,
(1)求证:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为( )
A.π+B.πC.π+2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com