考点:对称式和轮换对称式
专题:计算题
分析:根据已知条件,将代数式变形为:2x2+yz=-(x-y)(z-x),2y2+zx=-(x-y)(y-z),2z2+xy=-(z-x)(y-z),将上述三个变形结果分别代入所给的代数式中,化简、变形,运算、求值,即可解决问题.
解答:解:∵x+y+z=0,
∴x=-y-z,
2x
2+yz=x
2+x
2+yz=x
2+x(-y-z)+yz
=x
2-xy-xz+yz=x(x-y)-z(x-y)
=-(x-y)(z-x);
同理可得:2y
2+zx=-(x-y)(y-z),
2z
2+xy=-(z-x)(y-z),
∴原式
=
++=
| -x2(y-z)-y2(z-x)-z2(x-y) |
| (x-y)(y-z)(z-x) |
∵-x
2(y-z)-y
2(z-x)-z
2(x-y)
=-x
2y+x
2z-y
2z+xy
2-xz
2+yz
2=-xy(x-y)+z(x+y)(x-y)-z
2(x-y)
=(x-y)(-xy+zx+zy-z
2)
=(x-y)[x(z-y)-z(z-y)]
=-(x-y)(y-z)(z-x),
∴原式=
| -(x-y)(y-z)(z-x) |
| (x-y)(y-z)(z-x) |
=-1.
点评:该题考查了对称式和轮换对称式的化简与求值问题;解题的关键是深刻把握所给代数式的结构特点,灵活运用有关公式将所给的代数式变形、化简、计算、求值.