精英家教网 > 初中数学 > 题目详情

【题目】下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低(  )

星期

水位变化/

0.12

﹣0.02

﹣0.13

﹣0.20

﹣0.08

﹣0.02

0.32

A. 星期二 B. 星期四 C. 星期六 D. 星期五

【答案】C

【解析】由于用正数记水位比前一日上升数用负数记下降数由图表可知周一水位比上周末上升0.12从周二开始水位下降一直降到周六所以星期六水位最低.故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等腰三角形的周长为12,则腰长a的取值范围是(  )

A.3a6B.a3C.4a7D.a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.

∵S四边形ADCB=S△ACD+S△ABC=b2+ab.

又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),

b2+ab=c2+a(b-a),

∴a2+b2=c2.

请参照上述证法,利用图2完成下面的证明:

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.

求证:a2+b2=c2.

证明:连接

∵S五边形ACBED=

又∵S五边形ACBED=

∴a2+b2=c2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEBF,先按(1)的要求作图,再按(2)的要求证明

(1)用直尺和圆规作出ABF的平分线BD交AE于点D,再作出BD的中点O(不写作法,保留作图痕迹)

(2)连接(1)所作图中的AO并延长与BF相交于点C,连接DC,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在5×5的方格(每小格边长为1个单位长度)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫.规定:向上向右走为正,向下向左走为负.如果从AB记为:A→B(+1,+4),从DC记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中A→C可以记为(    ),B→C可以记为(    ).

(2)D→  可以记为(﹣4,﹣2).

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程长度为  

(4)若这只甲虫从A处去甲虫P处的行走路线依次为(+1,+3),(+3,﹣2),(﹣2,+1),请在图中标出P的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,AD是BAC的平分线,ADE是等边三角形,下列结论:①ADBC;②EF=FD;③BE=BD.其中正确的个数有( )

A.3个 B.2个 C.1个 D.0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是东方之星救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CDAD,A=30°CBD=75°,AB=60m.

(1)求点B到AC的距离;

(2)求线段CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为节约用水,某市居民生活用水按级收费,具体收费标准如下表:

用水量(吨)

不超过15吨的部分

超过15不超过25吨的部分

超过25吨的部分

单位(元/吨)

3

5

7

设李红家某月的为x(15<x25),应付水费为y元,则y关于x的函数表达式为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班12位同学参加每周一次的教室卫生大扫除有扫地、擦玻璃和擦课桌椅三个项目扫地的面积为88 m2擦玻璃的面积为32 m2根据实际情况将三个项目的面积分配情况和每人每分钟完成各项目的工作量制作如下统计图:

(1)擦课桌椅的面积为__________请补全图1中的各项目面积分配情况扇形统计图;

(2)卫生委员设计两种方案:

方案一12位同学先一起完成扫地任务再一起完成擦玻璃任务最后一起完成擦课桌椅任务;

方案二:12位同学先一起完成扫地任务后再把这12位同学分成两组每组6一组擦玻璃一组去擦课桌椅.

你认为这哪种方案完成大扫除任务所用的时间少少多少时间?

查看答案和解析>>

同步练习册答案