【题目】操作与探究.对数轴上的任意一点P.
①作出点N使得N和P表示的数互为相反数,再把N对应的点向右平移1个单位,得到点P的对应点P′.我们称P′是P的N变换点;
②把P点向右平移1个单位,得到点M,作出点P′′使得P′′和M表示的数互为相反数,我们称P′′是P的M变换点.
(1)如图,若点P表示的数是-4,则P的N变换点P′表示的数是 ________ ;
(2)若P的M变换点P′′表示的数是2,则点P表示的数是 ________ ;
(3)若P′,P′′分别为P的N变换点和M变换点,且OP′=2OP′′,求点P表示的数.
【答案】(1)5;(2)-3;(3) 或 .
【解析】
(1)根据①的操作步骤可得出P′表示的数;
(2)设点P表示的数为x,根据②的操作步骤则-(x+1)=2,得出点P表示的数;
(3)设点P表示的数为y,则P′表示的数是-y+1,P′′表示的数是-(y+1),根据OP′=2OP′′列方程解出即可得出点P表示的数.
解:(1)由①得,若点P表示的数是-4,则点P′表示的数是-(-4)+1=5;
(2)设点P表示的数为x,根据②的操作步骤则-(x+1)=2,
解得:x=-3;
则点P表示的数是-3;
(3)设点P表示的数为y,则P′表示的数是-y+1,P′′表示的数是-(y+1),
∵OP′=2OP′′,
∴
解得: , ,
∴点P表示的数是 或 .
故答案为:(1)5;(2)-3;(3) 或 .
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BC是直径,⊙O的切线PA交CB的延长线于点P,OE∥AC交AB于点F,交PA于点E,连接BE.
(1)判断BE与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,BE=3,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AD⊥BC,CE⊥AB,垂足分别为 D,E,AD、CE 交于点 F,若 EF=EB=5, AE=7,则 CF 的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空,如图:方格纸中每个小正方形的边长都为1,△ABC的顶点都在方格纸的格点上,将△ABC经过一次平移后得到△A'B'C'.图中标出了点C的对应点C'.
(1)请画出平移后的△A'B'C';
(2)若连接AA',BB',则这两条线段的关系是 ;
(3)利用网格画出△ABC中AC边上的中线BD以及AB边上的高CE;
(4)线段AB在平移过程中扫过区域的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.
(1)当t= 时,CP把△ABC的面积分成相等的两部分;
(2)当t=5时,CP把△ABC分成的两部分面积之比是= .
(3)若△BPC的面积为18,试求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+(2m+1)x + m2﹣1与x轴交于A,B两个不同的点.
(1)求:m的取值范围;
(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.
(1)以AB为底边作等腰三角形ABC,
①当t=2时,点B的坐标为 ;
②当t=0.5且直线AC经过原点O时,点C与x轴的距离为 ;
③若上所有点到y轴的距离都不小于1,则t的取值范围是 .
(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,热气球在离地面800米的A处,在A处测得一大楼顶C的俯角是30°,热气球沿着水平方向向此大楼飞行400米后达到B处,从B处再次测得此大楼楼顶C的俯角是45°,求该大楼CD的高度.
参考数据:≈1.41,≈1.73.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com