精英家教网 > 初中数学 > 题目详情

【题目】如图,AEAD,∠ABE=∠ACDBECD相交于O

1)如图1,求证:ABAC

2)如图2,连接BCAO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).

【答案】1)见解析;(2)△BDC≌△CEB,△DOB≌△EOC,△AOB≌△AOC,△ADO≌△AEO

【解析】

1)根据“AAS”证明△ABE≌△ACD,从而得到ABAC

2)根据全等三角形的判定方法可得到4对全等三角形.

1)证明:在△ABE和△ACD

∴△ABE≌△ACD AAS),

ABAC

2)解:∵ADAE

BDCE

而△ABE≌△ACD

CDBE

BDCECDBEBCCB

∴△BDC≌△CEBSSS);

∴∠BCD=∠EBC

OBOC

ODOE

而∠BOD=∠COE

∴△DOB≌△EOCSAS);

ABAC,∠ABO=∠ACOBOCO

∴△AOB≌△AOCSAS);

ADAEODOEAOAO

∴△ADO≌△AEOSSS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;

(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?说明理由

(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P的坐标是a,b,从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点Pa,b在平面直角坐标系中第二象限内的概率是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大长方形是由四个小长方形拼成的,请根据此图填空:x2+p+qx+pq=x2+px+qx+pq=  )(  ).

说理验证

事实上,我们也可以用如下方法进行变形:

x2+p+qx+pq=x2+px+qx+pq=x2+px+()=  =  )(  ).

于是,我们可以利用上面的方法进行多项式的因式分解.

尝试运用

例题 把x2+3x+2分解因式.

解:x2+3x+2=x2+2+1x+2×1=x+2)(x+1).

请利用上述方法将下列多项式分解因式:

1x2﹣7x+12; (2)(y2+y2+7y2+y﹣18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个六边形的六个内角都是120°,连续四边的长依次为2.312.322.332.31,则这个六边形的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB⊙O的直径,点CD⊙O上,且BC=6cmAC=8cm∠ABD=45°

1)求BD的长;

2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点Dy轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

A. 3 B. 4﹣ C. 4 D. 6﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点P是线段AD上一动点,OBD的中点,PO的延长线交BC于点Q。

(1)求证:OP=OQ;

(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

查看答案和解析>>

同步练习册答案