精英家教网 > 初中数学 > 题目详情

【题目】一个六边形的六个内角都是120°,连续四边的长依次为2.312.322.332.31,则这个六边形的周长为_____

【答案】13.92

【解析】

凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.

解:如图,AB2.31BC2.32CD2.33DE2.31,分别作直线ABCDEF的延长线和反向延长线使它们交于点GHP

∵六边形ABCDEF的六个角都是120°

∴六边形ABCDEF的每一个外角的度数都是60°

∴△APF、△BGC、△DHE、△GHP都是等边三角形.

GCBC2.32DHDE2.31

GH2.32+2.33+2.316.96FAPAPGABBG6.962.312.322.33EFPHPFEH6.962.332.312.32

∴六边形的周长为2.31+2.32+2.33+2.31+2.32+2.3313.92

故答案为:13.92

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是(  )

A. B. C. 1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CEO上的两点,若AC平分∠EABCDAE于点D

(1)求证:DC是⊙O切线;

(2)若AO=6,DC=3,求DE的长;

(3)过点CCFABF,如图2,若ADOA=1.5,AC=3,求图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,ADBCAEBC于点EADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.

(1)求证:CD与⊙O相切;

(2)BF24OE5,求tanABC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小黄站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船的俯角是,若小黄的眼睛与地面的距离米,米,平行于所在的直线,迎水坡的坡度为,坡长米,则此时小船到岸边的距离的长为( )米.(,结果保留两位有效数字)

A. 11 B. 8.5 C. 7.2 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEAD,∠ABE=∠ACDBECD相交于O

1)如图1,求证:ABAC

2)如图2,连接BCAO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程;

1)小明的想法是:将边长为的正方形右下角剪掉一个边长为的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.

2)小白的想法是:在边长为的正方形内部任意位置剪掉一个边长为的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,

(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△ABO与菱形ABCD重合部分的面积.

(2)如图3,将△ABO绕点O逆时针旋转交AB于点E,交BC于点F,

①求证:BE′+BF=2,

②求出四边形OEBF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.

(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?

(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)

查看答案和解析>>

同步练习册答案