【题目】如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.小明和小华利用这个转盘做游戏,若采用下列游戏规则:小明和小华各转一次,指针各指向一个数字,如果两数字之和是奇数是小明胜,否则小华胜。
(1)请用列表或画树状图的方法列出所有可能的情况;
(2)你认为这个游戏对双方公平吗?说明理由.
科目:初中数学 来源: 题型:
【题目】如图,直线yx+3分别与x轴,y轴交于点A、点B,抛物线y=x2+2x﹣2与y轴交于点C,点E在抛物线y=x2+2x﹣2的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
A.4B.4.6C.5.2D.5.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A(0,8),B(4,0),直线y=﹣x沿x轴作平移运动,平移时交OA于D,交OB于C.
(1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点D作DE⊥y轴交AB于点E,连接CE,设运动时间为t(s).
①是否存在t值,使得△CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t值;如果不能,请说明理由.
②将△CDE沿DE翻折后得到△FDE,设△EDF与△ADE重叠部分的面积为y(单位长度的平方).求y关于t的函数关系式及相应的t的取值范围;
(2)若点M是AB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出AN+MN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P是抛物线上的动点,且满足S△PAO=2S△PCO,求出P点的坐标;
(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长度为6千米的国道两侧有,两个城镇,从城镇到公路分别有乡镇公路连接,连接点为和,其中、之间的距离为2千米,、之间的距离为1千米,、之间的乡镇公路长度为2.3千米,、之间的乡镇公路长度为3.2千米,为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道上修建一个物流基地,设、之间的距离为千米,物流基地沿公路到、两个城镇的距离之和为干米,以下是对函数随自变量的变化规律进行的探究,请补充完整.
(1)通过取点、画图、测量,得到与的几组值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如图2,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
①若要使物流基地沿公路到、两个城镇的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)
答:__________.
②如右图,有四个城镇、、、分别位于国道两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地,使得沿公路到、、、的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)
答:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C.
(1)求证:BE=CE;
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N,若AB=2.(如图2)
①求证:四边形EMBN的面积为定值;
②设BM=x,△EMN面积为S,求S最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.点P从点A出发,以每秒个单位长度的速度向终点C运动,点Q从点B出发,以每秒2个单位长度的速度向终点A运动,连接PQ,将线段PQ绕点Q顺时针旋转90°得到线段QE,以PQ、QE为边作正方形PQEF.设点P运动的时间为t秒(t>0)
(1)点P到边AB的距离为______(用含t的代数式表示)
(2)当PQ∥BC时,求t的值
(3)连接BE,设△BEQ的面积为S,求S与t之间的函数关系式
(4)当E、F两点中只有一个点在△ABC的内部时,直接写出t的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为xcm,△APO的面积为ycm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;
(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表:
x/cm | 0.5 | 1 | 2 | 3 | 3.5 | 4 | 5 | 5.5 | 5.8 |
y/cm2 | 0.8 | 1.5 | 2.8 | 3.9 | 4.2 | m | 4.2 | 3.3 | 2.3 |
那么m= ;(保留一位小数)
(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.
(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为 .(保留一位小数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com