精英家教网 > 初中数学 > 题目详情

【题目】已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.

(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标 , 写出符合题意的其中一条抛物线解析式 , 并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数

【答案】
(1)解:如图1,

当点A在x轴正半轴,点B在y轴负半轴上时,

∵OC=0D=1,

∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,

当点A在x轴负半轴、点B在y轴正半轴上时,

设小正方形的边长为a,

易得CL=小正方形的边长=DK=LK,故3a=CD=

解得a= ,所以小正方形边长为

∴一次函数y=x+1图象的伴侣正方形的边长为


(2)解:如图2,作DE,CF分别垂直于x、y轴,

易知△ADE≌△BAO≌△CBF

此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,

∴OF=BF+OB=2,

∴C点坐标为(2﹣m,2),

∴2m=2(2﹣m),解得m=1.

反比例函数的解析式为y=


(3)(3,4),y=﹣ x2+ ,偶数
【解析】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合

①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+

②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,

③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在

④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+

⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣

⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+

∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,

∴所求出的任何抛物线的伴侣正方形个数为偶数.

【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)

1)求a的值;

2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;

3)按市场价格,木地板单价为300/平方米,地砖单价为100/平方米.装修公司有AB两种活动方案,如表:

已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形的顶点的坐标分别为,点的中点,点上运动,点是坐标平面内的任意一点.若以为顶点的四边形是边长为5的菱形时,则点的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4 ,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF, 经过点C,则图中阴影部分的面积为( )

A.2π﹣4
B.4﹣π
C.π﹣2
D.4π﹣8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=84°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠P=100°,则∠ACB的大小为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(01),然后接着按图中箭头所示方向跳动[(00)→(01)→(11)→(10)→],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是(

A.(544)B.(444)C.(445)D.(545)

查看答案和解析>>

同步练习册答案