【题目】操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.
(1)如图1,求证:BE=BF;
(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;
(3)类比探究:若DE=a,CF=b.
①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;
②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)
【答案】(1)证明见解析;(2)四边形PMQN的周长为2;(3)①QN﹣QM=,证明见解析;②QM﹣QN=.
【解析】
(1)根据矩形的对边平行可得∠DEF=∠EFB,根据翻折性质可得∠DEF=∠BEF,由此可得∠BEF=∠EFB,即可求得结论;
(2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB,先求出AB的长,继而利用面积法求出PM+PN=EH=,再根据平行形的周长公式求解即可;
(3)①如图3中,连接BP,作EH⊥BC于H,先求出EH=AB=,再根据面积法求得PM﹣PN=EH=,继而根据平行四边形的性质即可求得QN﹣QM=(PM﹣PN)=,
②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.
(1)如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEF=∠EFB,
由翻折可知:∠DEF=∠BEF,
∴∠BEF=∠EFB,
∴BE=BF;
(2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB,
∵DE=EB=BF=5,CF=2,
∴AD=BC=7,AE=2,
在Rt△ABE中,∵∠A=90°,BE=5,AE=2,
∴AB=,
∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,
∴BFEH=BEPM+BFPN,
∵BE=BF,
∴PM+PN=EH=,
PMQN是平行四边形,
∴四边形PMQN的周长=2(PM+PN)=2;
(3)①如图3中,连接BP,作EH⊥BC于H,
∵ED=EB=BF=a,CF=b,
∴AD=BC=a+b,
∴AE=AD﹣DE=b,
∴EH=AB=,
∵S△EBP﹣S△BFP=S△EBF,
∴BEPM﹣BFPN=BFEH,
∵BE=BF,
∴PM﹣PN=EH=,
∵四边形PMQN是平行四边形,
∴QN﹣QM=(PM﹣PN)=,
②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.
科目:初中数学 来源: 题型:
【题目】解不等式组;请结合题意填空,完成本题的解答。
I.解不等式①,得__________________;
Ⅱ.解不等式②,得__________________;
Ⅲ.把不等式①和②的解集在数轴上表示出来:
Ⅳ.原不等式组的解集为__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是BC边上的一个动点,沿着AE翻折矩形,使点B落在点F处若AB=3,BC=AB,解答下列问题:
(1)在点E从点B运动到点C的过程中,求点F运动的路径长;
(2)当点E是BC的中点时,试判断FC与AE的位置关系,并说明你的理由;
(3)当点F在矩形ABCD内部且DF=CD时,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料1:
经济学家将家庭或个人在食品消费上的支出与总消费支出的比值称作恩格尔系数.即:恩格尔系数=×100%.恩格尔系数可以用来刻划不同的消费结构,也能间接反映一个国家(地区)不同的发展阶段.联合国粮农组织的规定如表所示:
恩格尔系数 大于或等于60% | 恩格尔系数 在50%~60%之间 | 恩格尔系数 在40%~50%之间 | 恩格尔系数 在30%~40%之间 | 恩格尔系数 小于30% |
绝对贫困 | 温 饱 | 小 康 | 富 裕 | 最富裕 |
(注:在50%﹣60%之间是指含50%,不含60% 的所有数据,以此类推)
材料2:
2014年2月22日国家统计局上海调查总队报道:2013年上海市居民家庭生活消费总支出人均13425元.其中食品支出人均5334元(包括粮食支出450元,蔬菜及制品支出438元,肉禽蛋奶及制品支出1393元,水产品支出581元),衣着支出人均771元,居住支出人均2260元,公用事业支出人均694元,交通通信支出人均1719元,文化教育支出人均964元,医疗保健支出人均1181元,其它支出人均502元.
根据上述材料,
(1)分别计算出“食品”、“衣着”、“居住”、“公用事业”、“交通通信”、“文化教育”和“医疗保健”占家庭生活消费总支出的百分比,并补充完成下列扇形统计图.(百分号前保留一位小数,圆心角精确到1°)
(2)计算上海市居民的恩格尔系数,并判断2013年上海市居民的生活水平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点D在⊙O外,∠BAD的平分线与⊙O交于点C,连接BC、CD,且∠D=90°.
(1)求证:CD是⊙O的切线;
(2)若∠DCA=60°,BC=3,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的.
请根据图中的信息解答下列问题:
(1)本次调查的总人数是 人;
(2)补全条形统计图;
(3)根据调查结果,估计本校名学生中“假期活动方式”是“读书看报”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市礼乐中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:.艺术类;.文学类;.科普类;.其他,并将统计结果绘制成加图所示的两幅不完整的统计图.
(1)这次统计共抽取了________本书籍,扇形统计图中的________,的度数是________;
(2)通过计算补全条形统计图;
(3)请你估计全校师生共捐赠了多少本文学类书籍.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com