【题目】如图,在矩形ABCD中,点E是BC边上的一个动点,沿着AE翻折矩形,使点B落在点F处若AB=3,BC=AB,解答下列问题:
(1)在点E从点B运动到点C的过程中,求点F运动的路径长;
(2)当点E是BC的中点时,试判断FC与AE的位置关系,并说明你的理由;
(3)当点F在矩形ABCD内部且DF=CD时,求BE的长.
【答案】(1)2π;(2)FC与AE的位置关系为:FC∥AE;(3)
【解析】
(1)根据翻折的性质可得AF=AB,∠BAE=∠EAF,当当点E运动到点C时利用三角函数求出∠BAF的度数,最后再根据弧长公式,求出点F的运动路径长.(2)根据题意知道BE=EF=EC,再利用三角形内角和∠BFE+∠CFE=90°,最后根据翻折的性质求出∠BHE=90°,即可证出FC与AE的位置关系.(3) 过点F作FM⊥AD于点M,延长MF交BC于点N,根据题意求出AM的值,然后利用勾股定理求出MF,根据矩形的性质得到FN, 设BE=x,则EN=﹣x,利用勾股定理求出BE的长.
解:(1)由翻折的性质得:AF=AB,∠BAE=∠EAF,
∴点F运动的路径是以A为圆心,AB为半径,∠BAF为圆心角的弧长,如图1所示:
当点E运动到点C时,tan∠BAE==
∴∠BAE=60°,∠BAF=120°,
∴点F的运动路径长为:=2π;
(2)FC与AE的位置关系为:FC∥AE;理由如下:
连接BF交AE于点H,如图2所示:
由折叠性质得:BE=EF,
∵BE=CE,
∴BE=EF=EC,
∴∠FBE=∠BFE,∠CFE=∠FCE,
∵∠FBE+∠BFE+∠CFE+∠FCE=180°,
∴∠BFE+∠CFE=90°,即∠BFC=90°,
由折叠的性质得:BF⊥AE,
∴∠BHE=90°,
∴FC∥AE;
(3)过点F作FM⊥AD于点M,延长MF交BC于点N,如图3所示:
∵AB=3,BC=AB,
∴BC=3,
∵四边形ABCD是矩形,
∴AB=CD=3,DF=DC=3,
∴AF=DF,
∵MF⊥AD,
∴AM=AD=
在Rt△MAF中,MF===,
∵∠BAD=∠B=90°,MF⊥AD,
∴四边形ABNM是矩形,
∴BN=AM=,MN=AB=3,
∴FN=MN﹣MF=3﹣=,
设BE=x,则EN=﹣x,
由折叠的性质得:FE=BE=x,
在Rt△EFN中,EF2﹣EN2=FN2,
即:x2﹣(﹣x)2=()2,
解得:x=,
∴BE的长为.
科目:初中数学 来源: 题型:
【题目】如图所示,一种适用于笔记本电脑的铝合金支架,边,可绕点开合,在边上有一固定点,支柱可绕点转动,边上有六个卡孔,其中离点最近的卡孔为,离点最远的卡孔为.当支柱端点放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得的长为,为,支柱为.
(1)当支柱的端点放在卡孔处时,求的度数;
(2)当支柱的端点放在卡孔处时,,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,,,过点作边的垂线交的延长线于点,点是垂足,连接、,交于点.则下列结论:①四边形是正方形;②;③;④,正确的个数是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某市举办的以“校园文明”为主题的中小学生手抄报比赛中,各学校认真组织初赛并按比例筛选出较好的作品参加全市决赛,所有参加市级决赛的作品均获奖,奖项分为一等奖.二等奖、三等奖和优秀奖.现从参加决赛的作品中随机抽取部分作品并将获奖结果绘制成如下两幅统计图请你根据图中所给信息解答下列问题:
(1)一等奖所占的百分比是多少?三等奖的人数是多少?
(2)求三等奖所对应的扇形圆心角的度数;
(3)若参加决赛的作品有3000份,估计获得一等奖和二等奖的总人数有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.
等级 | 频数 | 频率 |
优秀 | 21 | 42% |
良好 | m | 40% |
合格 | 6 | n% |
待合格 | 3 | 6% |
请根据以上信息,解答下列问题:
(1)本次调查随机抽取了 名学生;表中m= ,n= ;
(2)补全条形统计图;
(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地间的直线公路长为千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发小时,途中轿车出现了故障,停下维修,货车仍继续行驶.小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离(千米)与轿车所用的时间(小时)的关系如图所示,请结合图象解答下列问题:
(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;值为_______.
(2)求轿车距其出发地的距离(千米)与所用时间(小时)之间的函数关系式并写出自变量的取值范围;
(3)请直接写出货车出发多长时间两车相距千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.
(1)如图1,求证:BE=BF;
(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;
(3)类比探究:若DE=a,CF=b.
①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;
②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).
(1)求二次函数的表达式;
(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;
(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com